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ABSTRACT

Means for predicting the fluctuating pressures acting on

externally blown flap surfaces are developed on the basis of

generalizations derived from non-dimensionalized empirical data.

Approaches for estimation of the fatigue lives of skin-stringer

and honeycomb-core sandwich flap structures are derived from

vibration response analyses and panel fatigue data. Approximate

expressions for fluctuating pressures, structural response, and

fatigue life are combined to reveal the important parametric de-

pendences.

The two-dimensional equations of motion of multi-element

flap systems are derived in general form, so that they can _e

specialized readily for any particular system. An introduction
is _resented of an a_proach to characterizing the excitation

pressures and structural responses which makes use of space-

time spectral density concepts and promises to provide useful

insights, as well as experimental and analytical savings.
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EXCITATION, RESPONSE, AND FATIGUE LIFE ESTIMATIO,_ METHODS 7'_

FOR THE STRUC'TURAL DESIGN OF EXTERNALLY BLOWN FLAPS

INTRODUCTION

Short take-off and landing (STOL) aircraft concepts have b_en

attracting much attention in the past several years, because

of their potential operational advantages over more conventional

aircraft. Of the several STOL configurations that have been

given very serious consideration, those incorporating "externally

blown" flaps (e.g., see Fig. i) have recently found increasing

favor, and EBF aircraft technology current]_, Ls the subject of

extensive study and evaluation.

Because the flaps of EBF aircz'aft are ext_osed to the direct

impingement of the engine exhaust streams, as well as to the in-
tense noise field that exists near the engines, the effects of

the associated fluctuating pressures must be taken into account

in the design of the flap structures. These effects are primarily

of two kinds: (i) "sonic" fatigue of the flap airfoil structures,

and (2) severe overall vibrations of the flap elements, with the

associated high oscillatory loads in the structures (and actua-
tors) that interconnect and support the flap elements. The pre-

sent report is intended to provide some preliminary analytical

approaches to assessing these effects, to revealing the import-

ant parameters, and to suggesting improved approaches.

The Sonic Fatigue Problem

The complex problems of sonic fatigue life prediction and

corresponding structural design fortunately may be simplified

by considering them in terms of a sequence of sub-problems.

These sub-problems consist of: (i) characterization of the fluc-

tuating pressure excitation, (2) determination of the structural

responses to this excitation, (3) evaluation of the most signifi-
cant associated oscillatory stresses, and (4) estimation of the

corresponding fatigue life.



FLUCTUATING PRESSURES ON EBF SURFACES

Jet Configuration

At several core-nozzle diameters aft of the nozzle exit

plane, the flow field produced by fan-jet engines appears to
be dominated by that due to the core jet (see Appendix A).

It is reasonable therefore to estimate the fluctuating pres-

sures produced by the exhaust from a fan-jet engine on the
basis of the pressures associated with the core jet, and to

make use of the extensive information available concerning

ideal circular jets.

The configuration of an ideal circular jet is sketched

in Fig. 2. This shows a converging conical "potential flow

region", surrounded by a diverging concial "mixing region".

The total angle 2_ subtended by the jet boundary t_Tpically

is between 25 and 30 degrees (Ref. 3). The length of the

potential core is given (Ref. 2) by

X
C

= 3.45 D(I + 0.38 M) _ (1)

where D denotes the diameter of the (engine core) nozzle and

M represents the Mach number of the exhaust stream.

Velocity Fluctuations in Jets

For estimation purposes it is also convenient to assume

that the velocity fluctuations that are present in the jet in
absence of an inserted flap are not altered substantially in

the presence of the flap, and one may then interpret available

velocity fluctuation data in terms of the pressure fluctuation

information one requires. Figure 3 indicates how the axial

turbulence intensity

z =u_/u o (2)
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Characterization of the fluctuating pressures on EBF sur-

faces for design and estimation purposes is summarized in the
first of the following sections and is discussed in some detail

in Appendix A. The next of the major sections of this report
deals with estimation of structural responses, of the associated

stresses, and of the fatigue life of EBF structures (based on

previously published information and on extensions of previously

employed approaches), both for skin-stringer and for honeycomb-
core sandwich structures. The assumptions underlying these es-

timations, and their limitations, are also pointed out in these

sections; a _eneral,potentially extremely useful, approach toward

characterizing the excitations and estimating responses is des-
cribed in A_nendix D.

The Buffeting Problem

This problem, which tends to be most significant at fre-

quencies that are substantially lower than those of primary

importance for sonic fatigue, also may be considered in terms
of a sequence of sub-problems, namely: (i) characterization of

the excitation, (2) determination of the associated vibratory

responses, (3) evaluation of the most significant deflections

and substructural loads, and (4) evaluation of these oscilla-

tions, deflections, and loads in terms of ride quality and sub-

structural design requirements.

In contrast to the treatment of the sonic fatigue problem,

this report deals with the buffeting problem in only a very

preliminary manner. The final major section of this report

presents the two-dimensional equations of motion of a general
EBF system, in which the airfoil components are considered as

rigid bodies interconnected by linear springs. These equations

display the important parameters and provide a basis for carry-
ing out natural-frequency and response calculations for specific

EBF designs.

2



FATIGUE LIFE OF SKIN-STRINGER STRUCTURES

Overview of Estimation Approach

Conventional aircraft structures consist of skins, rein-
forced by stringers, frames, and bulkheads (Fig. 7). Fluctu-

ating pressures acting on the skins tend to induce complex

vibratory deflections in the entire assembly, resulting in
associated stresses, which - in turn - lead to structural
fatigue.

Because of the complexities of the excitations and re-

sponses, currently available "sonic fatigue" design methods*

are based on analyses developed on the basis of simplifying
assumptions, coupled with empirically derived relatlons. These

analyses in essence focus on one bay (i.e., one skin panel) at

a time, ignore the complex spatial a1_d temporal distribution

of the exciting pressure by assuming the pressure always to be

completely in phase over the entire panel s and compute the

mean-square displacement response of the panel (mode by mode)

to this spatially uniform, but tJme-wlse random, oressure.They
then calculate the maximum stresses from the panel modal dis-

placements, and finally relate these calculated stresses to ex-

perimentally measured stresses and fatigue data.

The panel boundary conditions clearly play an important

role; they not only affect the natural frequencies of the pan-

el (which determine the parts of the excitation spectrum that

dominate the response), but also the mode-shapes and therefore

the relation between modal deflection and stress. Thus, pre-
vious investigators have expended considerable effort on meth-

ods for predicting the natural frequencies.

In dealing with the panel responses and stresses, the rein-
forcing structures (i.e., stringers and frames) are considered

essentially only as boundary conditions. They are in effect as-

sumed to deflect very little -an assumption that is likely to

*Although these methods were developed to cope with the

problem of fatigue induced by acoustic excitation, they may be
expected also to be applicable (at least approximately) in many

other cases of fluctuating-pressure excitation, including gener-

ally that due to impinging jets and tangential flows. In all

cases, of course, the quality of the estimate depends on how
well the actual situation matches the various underlying assump-
tions.
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In view of Eqs. (7) and (17), then,

Ls = LOA + i0 log
2Tf • Hz

1 + T_ 2

(22)

Making use of Eq. (8), one may find the peak spectrum level,

corresponding to ¢max' to be given by

Ls,peak = LOA + I0 log X X -lO log +C_ (23)

with

0.2 X Hz)CI = i0 log ref _ _ - 25.7 dB , (2_)
Uref

where Xre f represents a referenc_ axial distance. To arrive at
the above numerical value for Ci,Xre f was taken as I0 ft, and

the previously cited value of U r [ = 750 ft/sec was used. Bycombining Eqs.(20), (23), and (2_ one finds

Ls,peak = 152 + 30 log + I0 log_ ref -20 log 520
(25)

One similarly finds that the high-frequency spectrum level s

corresponding to the high-frequency approximation Chi freq (f) of
Eq. (16), is given by

Ls,hi freq = LOA +I0 log -i0 log "ref! -20 log\ refl +C2 '

where

U • Hz
C2 = I0 log ref

0. 2w2 Xreff_ef

_ - 24 dB

(26)

(27)
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With this value of I, Eqs. (5) and (6) reduce to

_T = (0.24 OoUo)2 ;
(13)

this then may be used to estimate the oressures on surfaces on

which a .jet impinges normally•

From Figs. 5 and 6 one may similarly deduce that for sur-

faces on which jets impinge more nearly tangentially, _p2/q<0.12,

so that for conservative estimation purposes one may take

-- 2)2p2 = (0.12 q)Z = (0.06 PoUo
(14)

Clearly, the assumption of normal incidence leads to mean-

square pressures that are higher by a factor of 16 than the

pressures one obtains for more tangential incidence, and struc-
tures that can withstand the normal incidence pressures for a

given period may be expected in general to survive the tangen-
tial incidence pressures for a longer period.

Pressure spectrum (spectral density)• - The frequency

spectral density Cp(_ of the fluctuating pressures, for both
the normal and tangential incidence cases, as has been stated,

is given by Eqs. (7) and (8). The maximum value of the spec-

tral density, which value is obtained for Tf_ << I, obeys

Cmax(f ) = 2pZT f _ 0.2X p2 _ 0 0115 Xo2U 3• O 0 'U o
(15)

where the last expression has been obtained by substitution of

Eq. ( 13).

For high frequencies, on the other hand, -- that is, for

Tf_ >> i,- Eqs. (7)_ (8), and (13) yield

__ -- 2US

(f) _ p2 UoP2 P- - 0.029 o o (16)

Chi freq 2_2Tff2 0.2_2Xf2 Xf2

where f = _/2w denotes the cyclic frequency.



1 21 u 2 _ 0u (6)q=y0oo

represents the dynamic pressure at the exit.

The frequency-spectral density ¢p(¢) of the fluctuating
pressure is shown in Appendix A to be of the same form as that
of the fluctuating velocity component, and to obey*

__ T _/v

_ 1 Cp(f) _ p2 1 (7)
_p(_) 2_ i + T_w a

where Tf represents a typical time scale (or inverse frequency)
of the pressure or velocity fluctuations and obeys

Tf _ 0.1 X/U ° , (8)

and where _ denotes the radian fl'_quency.

From Appendix A one also finds that the pressure cross-

correlation function @plpz(S,T) for two points on the flap

surface near the jet axis, separated by a distance s, obeys

(s,T) = _ e-s/L e -ITI/Tf (9)

where L denotes a length scale, called the correlation length,

and is Riven by

L-" 0.025 X . (io)

Near-Tangentially Impinging Jets. -For flap surfaces along
which the engine exhaust flows essentially tangentially, the
assumotion of momentum flux annihilation would tend to overesti-

mate the mean-square fluctuating pressure. From Figs. 5 and 6,

*The spectral density ¢O(_) represents the mean-square
pressure per rad/sec, wherea_ the spectral density Cp(f), ex-

pressed in cyclic rather than radian frequency, represents the

mean-square pressure per Hertz.
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FIG, 13 ILLUSTRATIVE IDEALIZED FLAP SYSTEM,
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C.G. OF
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ISOMETRIC SKETCH
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FLAP

FIG. I. EXTERNALLY-BLOWN-FLAP STOL AIRPLANE (FROM REF. I).
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corresponds to an intersection of the kb(_) curve, which is a

plot of Eq. (6), with the _ = _11ine. Obviously, one may expect

the product (integrand) to exhibit a very strong peak if the

peaks of the factor functions coincide. The two frequencies at
which this condition can occur are readily identifiable in the

diagram: (I) at _o, for which kb = ko, the admittance peak occurs

at the same location as the jet noise peak. (2) At _H, for which

kb = kH, the admittance peak occurs at the same wavenumber as the

turbulent flow peak.

Stresses. -Since the root-mean-square strain in a uniform

beam or plate is very nearly equal to the ratio of the root-mean-

square velocity to the longitudinal wave velocity in the material,
calculation of the rms strain is a simple matter once one knows

the mean-square velocity. Of course, one then merely needs to

apply Hooke's law to obtain the rms stress.

}]ethods are also available that permit one to account for

the stress increases at boundaries, supports, or reinforcements.

Determination of the motions of supporting structures (e.g., of

plate ribs or frames) and of the associated stresses involves
additional calculations, which often can be formulated in rela-

tively simple terms.
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The (space and time) Fourier transform of Eq. (4), when

written in terms of the velocity v instead of the displacement

y, may be shown to be

(k _ - kb4)v = _(k,¢) , (5)

where k and w represent the wavenumber and radian frequency
(which replace x and t as a result of the Fourier transform

Drocess) and _(k,¢) represents the Fourier transform of p(x,t)

-- i.e., the spectral pressure amplitude. The wavenumber k b
obeys

k 4= _2m/B (6)
b

and is that wavenumber at which free bending waves travel with-

out dimunition (in the absence of damping).

The admittance Y is defined as the ratio of the spectral

velocity to the spectral pressure; for the beam under consider-
ation here one finds

I( 4)]iY(k,oo) - V~ _ wm 1 k< (7)
P e

As evident from this equation or from t1_e sketci_ of this func-

tion appearing in Fig. 21, the admittance has a sharp peak at

k = k b. In fact, this peak rises to infinity for undamped
systems, but remains finite for realistic structures that al-

ways have some damping.

Admittances of Other Structures. -Equation (7) probably

represents the simplest admittance function of practical in-

terest. However, expressions are also available for the ad-
mittances of beams with uniformly spaced masses attached, or
of one-dimensional plates with uniformly s'paced ribs. These

expressions are more complicated than that for a uniform beam,

but are no different in concept.

For two-dimensional structures, the admit<ance functions

involve two wavenumbers, corresponding to Fourier transforma-

tions on the two spatial coordinates, but otherwise again do

not differ in concept from the simple beam admittance.

7_



= (3)

where L and T, respectively, denote the spatial interval (here,
in one dimension for this introductory one-dimensional discus-

sion) and the time interval over which the pressures are sampled.

Surface Pressures in Turbulent Flow. -- Figure 19 indicates

schematically the typical behavior of the pressure spectral den-

sity ¢(k,_) associated with turbulent flow along a surface. If

one considers the curves of constant spectral density as "contour

lines" in the k,_ plane, one notes that the ¢ hill has a ridge

along a line whose slope is _/k = U_, where U_ represents the

speed of the flow along the surface. For blown flap surfaces,

U_ generally is considerably less than the speed of sound Co, as
also indicated in the figure.

All points on the 0J = kU_ line represent energy travelling
at the speed of the flow. If all of the energy would travel at
the flow speed, -- i.e., if the turbulence were "?rozen" into

the flow and would convect at the flow speed - the contour lines

would collaose into the U_ line. The spread of the contour

lines about this line reflects the "unfrozen" nature of boundary
flow, - i.e., the _resence of a distribution of components tra-
velling with different speeds.

At any particular frequency _i, the component that travels

with the speed of the flow has a certain wavenumber k H. Ti_is is
called the hydrodynamic wavenumber at that frequency, and it is

the wavenumber at which there exists the greatest fluctuating-

pressure energy at that frequency. Similarly, the component at

_ that travels with the speed of sound has a wavenumber ko, the
acoustic wavenumber. Sound waves travelling (at grazing inci-

dence) along the surface correspond to the co line of the figure.

The lower _art of Fig. 19 shows a "slice" taken through the

upper plot at the constant frequency _. The peak in the spec-

tral density at the hydrodynamic wavenumber k H again displays
the fact that most of the energy travels at the speed of the

flow. It is important to observe, however, that significant

amounts of energy also travel at other speeds, particularly at

soeeds near U_. Indeed, the fact that ¢(wl,k) is finite for a
range of values of k below k o indicates that some energy travels
at soeeds greater than the sound speed.
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first of these functions is known to acousticians (and to radar

and sonar engineers) as the directivity pattern of the source

of excitation; it represents the spectral density of the sur-

face pressures. The function representing the structural stiff-

ness is known to structural dynamicists as tile surface (spectral)

admittance of the structure, and to acousticians as its array re-

ceiving pattern. The available physical understanding of these

functions should facilitate direction and evaluation of research

and design programs. Since only integrals of products of func-

tions are required, only minimal computational difficulty is in-

volved.

Experimental Savings and Accuracy Gain. --With the STSD ap-

proach, the (spatial) spectral density of fluctuating pressures

acting on a structural surface may be measured by means of an

array of oressure sensors flush-mounted on the surface; the out-

puts c f all of the (spatially distributed) sensors are sampled

simultaneously and recorded. The records are later digitized

and entered into a digital computer for calculation of the spec-

tral densities. Only one experimental run is needed for each set

of independent variables.

Alternate approaches to representing surface loads in es-

sence require the repositioning of pairs of transducers and many

renetitive runs for each set of independent variables. The re-

corded sensor outputs from all such runs typically are cross-

correlated for a range of time delays, leading to space-time

cross-correlation functions. Because data from different runs

are obtained and analyzed separately in these approaches, loss of

accuracy results due to random experimental errors. The STSD

approach, on the oti_er hand, is based on a single run - not

only reducing this source of errors drastically, but also lead-

ing to a considerable saving in run time.

Extensions. - The STSD approach is ideally suited for

dealing with the responses of surface (e.g., skin) structures

to snatially homogeneous excitation. Where tLe responses of

interior or supporting structures (e.g., ribs, stringers) are

of interest, these may be exoected to be determined relatively

simoly from the surface structural responses.

As the spatial inhomogeneities of t_e exciting pressure

field and of the s_ructure increase, the STSD descriptions re-

quired to provide sufficient accuracy become more complex, in
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TABLE C-I. - FATIGUE LIFE CORRECTION FACTORS FOR ALUMINUM ALLOYS

O Q.
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2014 'i'6

Clad 2014 T6

2024 T42

" 'i'3
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" T36

Clad 2024 T3

" T36
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" T81
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" T6

7075 T6
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2.7

*Average value for thin sheet specimens, Ref. 34.

%Completely reversed flexural stress that flat specimens can endure for !0 _ cycles.
F_om Table 3.3.16c), Ref. 34.
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take the endurance limit as the fatigue stress. Aluminum alloys
do not have endurance limits, in general (Refs. 34 and 35); for

such alloys one needs to define S as corresponding to any fixed
number of cycles, say N = 108

Correction for Fatigue Stress. - If one summarizes Eqs. (45),
(52), (71) and (75), as

N = B(ol/Oref)-B , (2)

then one may write

°ref
(3)

and, introducing Eq. (i),

o 2 S 2 o_ S 2 IN_-I/B

Ore f S 1 °ref S
(4)

Then, the number N of cycles that material 2 can withstand is

found to obey

N = B _ NI m '
(5)

where NI denotes the number of cycles one calculates for the

basic material -- i.e., by use of Eq. (2) -- and

km = (S2/SI)B (6)

is a correction factor that accounts for differences in the

material's fatigue properties.

Since the fatigue life is proportional to the number of

cycles to failure, one may obtain the fatigue life of a struc-

tural component of any aluminum alloy by multiplying the life

one calculates for that component on the basis of Eqs. (45),

(52), (71), (75), by the appropriate correction factor km, as
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where E represents the modulus of elasticity of the skin material.

The shear stress in the core obeys

T = Gw s A A L w 0 cos (ii)

Thus, the maximum shear stress Tmax, which may be seen to occur at

the ends of the beam, is related to the maximum skin stress _max

due to flexure (which occurs at the beam center) as

Tmax _ wB (12)

o LAcE
max

Rectangular Section Beam. -- For a full-depth honeycomb beam

with a rectangular cross-section of width e and thickness H, and

with facing sheets (skin) of thickness ts,

B z EH2et /2 , A z eH . (13)
S

Then the correction factor term aopearing in Eq. (8) becomes

w2B - _2E Hts (14)

L2AG G L 2

Since Hts/L 2 generally is very small, the expression of Eq. (14)
may be exoected to be small compared to unity, except for very

soft cores, for which w2E/G is very large. Thus, except for such
soft cores, the bending natural frequency exoression of Eq. (9)

may be exoected to suffice, since the factor by which _b is multi-
olied in Ea. (8) then is very nearly equal to unity.

By substitution of Eqs. (13) into (12) and noting that

c = H/2 one finds that for a rectangular section beam

T t
max s (15 )

L
max
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APPENDIX B

SHEAREFFECTS IN HONEYCOMB-CORESANDWICHBEAMS

Since the honeycomb core, when considered as a continuum, has
a relatively low shear modulus, shear deflection may play an im-
portant role in the dynamics and stresses of honeycomb core sand-
wich beams. This appendix presents an approximate analysis of
the effects of the honeycomb beam shear stiffness.

In Ref. 26 there is summarized an analysis of the stress re-
sponse of simply supported honeycomb-core sandwich panels. The
analysis presented below proceeds in the same manner as that of
Ref. 26, but applies for beams instead of panels.

Relation Between Flexural and Shear Deflections. -- The total

deflection w of a beam may be considered as composed of a compon-

ent wb due to bending and of a component w s due to shear, that is,

w = w b + w s •
(i)*

For a beam vibrating at its fundamental resonance frequency w,
one finds from simole beam theory that the deflections must sat-

isfy the differential equation

w,,,, _ _ (2)
b - B _2w

where the primes indicate differentiation with respect to the

longitudinal coordinate x, B denotes the flexural stiffness of

the beam, and _ its mass per unit length.

From elementary beam bending theory one finds that the shear

force Q is given by

Q = -Bw'{ '
(3)

Since the shear strain is equal to w' the shear force must also
S'

obey

Q = GAw s ,
(4)

*For the sake of simplicity, new equation numbering sequences

are begun in each appendix. All equation numbers mentioned in

this appendix refer to equations presented in this appendix.
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m

density p2¢n(_ ) of the fluctuating pressure due to turbulence on

an EBF is gffven by Eqs. (5) and (i0), but with the latter reduced
by a factor of 4.4 (or I0 log 4.4 -- 6.5 dB).

Correlations. - If one approximates the pressure field as
spatially homogeneous, as was done for the momentum annihilation

case, one may write the wavenumber-frequency spectrum of the
boundary-layer-like fluctuating pressure field as

Cp(k,_) = p2¢n(_)¢x(kx)Cy(ky ) (17)

where k, kx, ky have the same meanings as previously. The forms
of the-componeht spectra Cx and Cv and the magnitudes of the
parameters that enter them may be-determined on the basis of data

given in Ref. 8 relating to the spatial correlations of the fluc-
tuating pressures. One finds that

Lx/_
Cx(kx ) (18)

I + (k x - kh)2L2

L r/w

¢ (ky) - _ (19)
Y I + k2L 2

Y Y

Here khtdenotes the hydrodynamic (or "convective") wavenumber,
i.e., he wavenumber corresponding to pressure fluctuations

that pass an observation point at the flow convection velocity
V
c;

kh = _/V c. (20)

This convection velocity is related to the jet exit velocity U
as o

V _ 0.45 U (21)
C 0
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f
¢ (k,_) - i
p -- (2w)3 ].

_p(X,T) = //

Cp(X,T) e-i(k " X-roT) dxdydT (ii)

Cp(k,m) ei(k- "x-wT)dkxdkyd_ o (12)

The pressure correlation ¢o(s,T) given by Eqs. (6) and (3)
is isotropic; --i.e., it is a fhnction of only the separation

s = [(x I - x2)Z + (Yl - Yz )211_ rather than of the coordinates

(xl,Yl) and (x 2,y2 ) of the two observation points. This isotropy

implies that the wavenumber-frequency spectrum is a function of
2 2 1/_

only the magnitude k = [k_ + k 2] of the wavenumber, rather

than of the vector k; that is,

(k,m) = ¢ (k,w) (13)
p - p

Since the pressure correlation Cp(S,T) consists of a pro-
duct of a spatial and a time function, the wavenumber-frequency

spectrum consists of the product of a frequency and a wavenumber

functi on ;

where here

_p(k,_) = p2_n(_)_(k)

¢(k) - i ffe-S/L

(2w) 2 YY

(14)

-ik • x
e dxdy. (15)

With the above relation for the separation s,

L 2
e-S/Lj (ks)ds - [I + kZL2] -31

o 2w
(16)

where J is the zero-order Bessel function of the first kind.
O
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suggest that this correlation depends only on the separation

distance s between the two observation locations, and not on

the direction from one point to the other. Furthermore, these

data indicate that the correlation length (i.e., the distance
within which the correlation decays to a small fraction of its

maximum value) is considerably smaller than the distances over

which there occur significant variations in the mean velocity

U or in the mean-square fluctuating velocity u-_. Thus, one is

justified in considering u to be a nearly spatially homogeneous
field. Taking account of the exponentially decaying character

of the correlation indicated by the data, one therefore may
write

Cu U (T) = Cu(S,T) = U_ e-s/L e-ITI/Tf (3)
12

where L and Tf denote the correlation length and the correlation
time, respectively, of the fluctuating velocity.

The data also suggest that one may estimate the two above-

mentioned correlation parameters from

L _ 2.5 x 10-2X (4)

Tf _ 0.1X/U o (5)

where U represents the jet exit velocity.
O

In terms of the previously indicated approximations, one

may express the pressure correlation (Eq. 2) on the EBF as

@PlP_) = Cp(S,X) = 40ZU2¢u(S,_)
(6)

For distances X of interest for realistic flaps (i.e., X/D _ 9),

the local velocity U is very nearly equal to the exit velocity

U o or U c (see Figs. 14b and 15).

Mean-square pressure. --From Eq. (6) one finds that the

mean-square fluctuating pressure _ is given by

p--f-= Cp(O,O) = 402U2u -'£ = (4qI) 2
(7)
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APPENDIX A

MODELS AND ESTIMATES OF AEROACOUSTIC LOADS

ON EXTERNALLY BLOWN FLAPS

Jet Efflux Configuration

A typical idealized jet efflux configuration is sketched in

Fig. 2, showing a converging conical "potential core" surrounded

by a spreading conical expansion region. It is expected that
externally blown flap (EBF) structures will be inserted in this

spreading region, in order to deflect the flow downward, so as
to provide lift. The problem to be considered here consists of

characterizing the fluctuating pressures that will act on the

flap surfaces, so that one may estimate the corresponding vibra-

tory stresses for design purposes.

At first glance it may seem inappropriate to consider the

flow produced by a fan-jet engine like that from a simple jet.

However, one may conclude from Fig. 14that the simple jet gives

a reasonable approximation to the flow profile in those regions
which EBF surfaces are likely to be. Whereas Fig. 14aindicates

that a pronounced low-velocity fan-flow annulus may be discerned

near the exit plane, Fig. 14b shows that the fan flow plays only
a relatively minor role at locations several diameters from the

nozzle plane. Indeed, if one plots the fan-jet data of Fig. 14b
in non-dimensionalized form and compares it with similar data

for an ideal circular jet (Fig. 15), one finds that the fan-jet

profiles are quite consistent with profiles* corresponding to
an ideal jet issuing from the core nozzle (with diameter D )

c
with the core exhaust velocity U c.

If one assumes that the aeroacoustic noise field in the

engine exhaust stream is, like the flow profile, similar to
that for an ideal circular jet, then one may use the rather

extensive data available for ideal jets to estimate the fluc-

tuating pressures acting on an EBF inserted in the exhaust
stream.

*Such dimensionless mean velocity profiles are known to

vary only little with the jet Mach number M.
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CONCLUDING REMARKS; RECOMMENDATIONS

The approach suggested here for estimation of fluctuating

pressures associated with engine exhausts is based on extrapola-
tion of nondimensionalized fluctuating pressure data obtained

from simple jets and on interpretation of similar velocity dis-
tribution data from measurements in the exhausts of a very lim-

ited number of fan-jet engines. Clearly, the availability of

data on the fluctuating pressure distribution in the exhaust

of the engine to be used in any particular application may be

expected to improve the characterization of these pressures and
to increase the confidence one has in fatigue life estimates

based on these pressures. Comparison of predictions based on

the approach suggested in this report with corresponding full-

scale fan-jet engine fluctuating-pressure data would also serve
as a useful check on the validity of the suggested approach.

The response, stress, and fatigue life estimation approaches

presented in this report follow the earlier literature in assum-

ing only the fundamental mode of the structure to be of impor-
tance. Although this assumption may lead to conservative designs

and life estimates in many cases, one can easily visualize prac-

tical situations where higher modes predominate. Such cases are

particularly likely to occur with engine exhaust excitation,

where the excitation pressures are correlated over small areas,

have spectral peaks at frequencies considerably higher than the

fundamental structural resonance, and convect along the struc-

tural surface. Indeed, there also exists some experimental evi-

dence that shows that higher structural modes play important

roles in responses to flow excitation. Of course, the importance

of h_gher modes in determining fatigue life is also enhanced by

the higher fatigue damage accumulation rates associated with

their higher resonance frequencies. Thus, it appears advisable

to use the response, stress, and fatigue estimation approaches

suggested here with some caution. Reexamination of these ap-

proaches, and their extension to include appropriate higher mode

responses, is recommended.

Any but the most grossly empirical fatigue life prediction
method must be based on information concerning how the number of

loading cycles that a structure can withstand varies with the

fluctuating stress. The method suggested in this report is based
on sonic fatigue data derived from tests on panel specimens of

only one material for each panel type. In particular, the data

pertaining to the fatigue of honeycomb-core sandwich structures
is extremely limited. Thus, although one may expect the sug-

gested prediction technique to yield good results for structures
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Approximations for Small Ansular Displacements. -- For
i, sin@ = @ , theangular displacements, for which cos@ n n n

above relations reduce to

small

Fx I = ml_ I +kx(l,0)[x I- C -Be I] + kx(l,2)[x l-x 2 +G +;5 +lie I + Le 2]

Fy I = ml_ I +ky(l,0)[y I +B-CS I] + ky(l,2)[Y I -Y2 -H -L +G8 1 +N@ 2]

1 E = I @l+k@ [8 -e ] + k s [8 -@2 ]M! + FylD - Fx 1 (1,0) 1 0 (1,2) 1

-kx(m,0)EXl-C-Bel](B-Cel)-ky(1,0)EYl+B-Cel](C+Bel )

+kx(l,2)[x I- x2 + G +N +He I + Le2][H - G@ I]

-ky(l,2)[Yl-Y 2 -H-L+Ge]_+Ne2][G + He:L]

Fx2 = m2_ 2 + kx(2,0)[x2-K-J@2 ] + kx(2,1)[x 2 -xI-G-N-HeI-L 2 ]

+ kx(2,3)[x2 - x3 + R + U + Se2 +Te3 ]

Fy 2 = m2_ 2 + ky(2,0)[Y 2 +J-KS 2] + ky(2,1)[Y 2 -YI+H+L-Oel-Ne2 ]

+ ky(2,3) [Y2 - y 3 - 5 - T + Re 2 + ue 3]
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Fx2 = m2_ 2 + k
x(2,o)[_2-_o](2,o) + k

x(2,1)[_2 - {i](1,2)

Fy2 = m2Y 2 + k
x(2,0)[h 2 -rl 0](2,07

+ ky(2,3)[_2 - _3](2,3)

+ ky(2,l)[r_ 2_r_I](1,2 )

+ k
Y(2,3) [r_2 -r13](2,3 )

Ms + FY2P - _×2Q = 12e2 + ke(2,0)(e 2 -0
o 7 + k0(2,1 )(02 - e17

+ ke(2,3)(e 2 -e3)

-k [_2 - _0 ] [Jcosex(2,0) (2,07
2 - Ksin02 ]

+k
y(2,o)gn2 -_o ]

(2,0) [-Hcose2 _ Jsin62 ]

-kx(2,l)[_ 2 -_l](2,Z) [Loose 2 -Nsine2]

+k [_2
Y(2,1) - Tll](2,l 7 [-11co282 _ Lsine2 ]

-kx(2,37[[ 2 - _3](2,3) [-Seos02 +Rs/n@2 ]

+k

Y(2,3)[O2-_3](2,3) [Rcose 2 + Ssine2]
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whence

<(n)(n,s) - 6(s)(n,s)

r](n)(n,s) - rl(s)(n,s)

- It(n) - _(s)l (n,s)

- x + Xn= Xn s (n,s)C°Sen

- Yn(n,s)Sinen

-= lq(n) - q(s)} (n,s)

- Xs(n,s)COSe s

+ Ys (n,s)Sine s

= Yn Ys + Yn(n,s) c°se - Y cose- n s(n,s) s

+ Xn(n,s)sinen - Xs(n,s)Sin9

(zoo)

One may note that all k's, X's, Y's, as well as Fx, F ,
M, m, and I represent known or given quantities. On the o{her

hand, the x's, y's and e's are the unknowns. Thus, one has

three unknowns per flap element, as well as three equations

of motion per element, so that one has as many equations of
motion as there are elements.

Equations for Illustrative Flap System

Dimensions. -- The rather formidable appearance of the

foregoing equations is due to the somewhat intricate notation,

which was introduced for the sake of generality. In order to

obtain a clearer view of the nature of these equations (and

of the meaning of the notation), it may be instructive to

refer to the particular configuration sketched in Fig. 13.

If the various capital letters indicated in that figure denote

(positive) dimension values, then in terms of the previously

introduced notation,
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displaced by the amounts _,q in the x and y directions, respec-

tively, if the flap center of gravity is displaced by the amounts

xn and Yn in the coordinate directions, and if the flap is
rotated through an angle 0n, where

= x + Xcos8 - Ysin8
n n n

= + XsinO
Yn + Yc°sSn n

(97)

Spring Forces. - The difference between the displacements of

the force-interconnection points on two flap elements, which

points coincide when the flap system is in equilibrium, may thus
be found from the difference between the _'s and q's for the two

points. This difference corresponds to the extension (or com-

pression) of the interconnection springs, and therefore determines

the spring forces.

Dynamic Equilibrium of Flap Element. - Using the attachment-
point coordinate designations* indicated in Fig. i!, one may find
the following equations of motion for the nth flap element:

: _ + k _(n - 6 1 ,n-l)Fxn mn n x(n,n-l) ) (n-l) (n

F
yn

+ k I_(n - <(n+l)l (n n+l)x(n,n+l) )

= mnYn + ky(n,n-l)I_](n) - T](n-l)l (n,n-l)

+ ky(n,n+l)IT](n) - T](n+l)l (n,n+l)

(95a)

*E.g., Yn(n,n-l)__ denotes the Y coordinate, as measured in the

system attached to the nth flap element, of the point at which

the nth and (n-l)th elements are interconnected.
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Changes in the flap element's flexural rigidity and mass
per unit length may be seen to have somewhat lesser effects

on these two fatigue lives. On the other hand, the core

density affects the core's fatigue life very significantly,

with a 10% increase extending the fatigue life by a factor

of about 2.7. Again, the Jet exit velocity is the most

important jet parameter, with a 10% decrease in U o leading
to increases in the skin and core fatigue lives by factors

of 2.9 and 6.4, respectively.
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If one again substitutes for Cp from Eq.

Th

i018 T7"°5 d-1°"6
re f re f

(81), one obtains

r

TM
640 2 d lo. 6 n 3.525i( i !7.05 U lo. 57X g'52Spo o

for f << fT

31(dl06 Aje  0s 3(x3s 1
LI211(_/B)I'265 07 "°5U17"62o

for f >> fT (94)

Design Considerations. -Equations (90) and (93) show that

the fatigue lives of facing sheets and honeycomb cores increase

with decreasing exciting pressure spectral density (evaluated at

the flap element's fundamental natural frequency). This trend

is as one would expect intuitively. Since the spectral density
decreases with increasing frequency, as indicated by Eq. (9), one

may obtain '_grea_er fatigue life by designing the flap element to

have a higher fundamental resonance. In view of Eq. (55), a nigh
fundamental resonance results from use of short unsupported spans

L and of large stiffness/mass ratios B/_.

As evident from Eqs. (92) and (94), reductions in L can re-

sult in quite dramatic increases in fatigue life, provided that

the flap element's fundamental frequency fl is above the transi-

tion frequency fT" If fl < fT, then the facing sheet fatigue
life increase produced by a given amount of length reduction is
somewhat less dramatic -- and this length reduction may indeed be

expected even to reduce the core's fatigue life.

From Eqs. (91) and (93) one may determine that

Th =2"6x1011Tf B1 (c_)2_9(cL)4_6 (_)1°'6{Treflr-F _}

7.05

[_1 r o 2 ]

ref

'CfCp (f I )

I. _9 5

(95)
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81Ts .7 × 10 7

1.1
2 2

0.0 = 2.1×10 -4 ,

which indicates that stringers typically have much longer fatigue
lives than skin panels -- in agreement with experimental ooserva-
tions.

Thus, one generally should first design the panels so that

they have adequate fatigue lives, and then verify that the stringer

des!Kn selected (usually on the basis of other than fatigue consid-
erations) has a fatigue life that is no less than that of the pan-

els.

Honeycomb-Core Sandwich Flaps

Facing Sheets (Skin). -- If one substitutes into the fatigue

life expression of Eq. (47) the number of cycles to failure as

given by Eq. (71) and the natural frequency expression of Eq. (55)

--with al = 2.36, to account for. boundaries that are neither sim-
ply supported nor fully clamped, - and if one also uses the sec-

ond stress expression of Eq. (68), which applies for the same

boundary conditions, one finds that

] 4.06

4.06 ( )2.0= 360 B I _l.sls B2. s4S {Ore f ql
L2.0_ _ecLE @p(fl ) " (90)

In order to display the dimensional correctness of this ex-

pression clearly, one may define an effective fla___density

Of = _/A, an effective radius of gyration r = _EA, and an ef-
fective longitudinal wavespeed cf = _. With these substitu-

tions, one may rewrite Eq. (90) as

2.03

Tf _ 360 B I \e--_ f@p(fl)
(91)
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xO,2 74 )0.548 UI.370

0 O

for f >> fT

Design Considerations. --As is evident from Eqs. (80) and

(86), the fatigue lives of skin panels and of stringers increase

as the excitation - represented by the pressure spectral density

@p(f) - decreases. This behavior is as one would expect intui-
tively, of course. Since this spectral density decreases with

increasing frequency, as indicated in Eq. (7), one should design

the skin panel to have as high a fundamental resonance frequency
f as possible. In view of Eq. (79), this implies that one should

choose the largest admissible panel thickness h and the smallest

panel edge length a. One might also consider choosing materials

with large longitudinal wavespeeds CL, but most acceptable struc-

tural materials have wavespeeds that differ by no more than about

10% from each other, so that one stands to gain little by choos-
inn alternate materials on this basis.

Table I, which has been developed on the basis of the high-

frequency oart of Eq. (83), shows by what factors the fatigue life

of a blown flap pane Z may be expected to change as the result of

changing the various parameters. Thus, for example, one finds
that a change in the skin thickness h by a factor of 1.50 (i.e.,

a 50% increase) would increase the fatigue life by a factor of

71; similarly, decreasing the panel edge length a by 20Z would
lengthen the fatigue life by a factor of 14, whereas doubling the

damping _ would increase that life by a factor of 4.9.

As evident from both Eq. (83) and Table I, relatively small

changes in h and a can lead to quite considerable changes in pan-
el fatigue life; the effects of changes in the other structural

parameters are much less significant. Small changes in the dis-.

tance X of the flap from the engine exit have relatively little

effect on the fatigue life, and changes in the gas density (asso-

ciated with exhaust temperature changes) that can occur with a
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If the panel resonance frequency f is in a range where

¢p(f) varies little with changes in f, then Eq. (80) exhi0its
all of the dependences of the fatigue life on the panel para-

meters. On the other hand, if Co(f) varies significantly with

f, then the deoendence of f on the oanel oarameters gives rise
to additional effects. From Eqs. (8), (15) and (16) one finds
that

0 0115 z 3
• OoUoX for f << fT

¢ (f) (81)

P f0.29 p oU o/Xf for f >> %

where the transition f_equency fT obeys*

fT _ 1.5 Uo/X.
(82)

Substitution of Eq. (81) into (80) and use of Eq. (79)

results in

T

_.60B
I0 sOr e f

(haSa° rl2"3° i (X 1CL ' U e's°)fOr:-7.,o,
Po o

f << fT

1.9 for f >> fT
a"'8° \p 4._o U_,.so

(63)

where the first parentheses enclose all relevant panel para-

meters, whereas the second enclose the jet parameter terms•

Strin6ers. -- Again for the purpose of exhibiting the sa-
lient parametric effects most simply, it is useful to consider

the common case where the stringer length is the same as the

greater of the two panel edge lengths, and where the spacing

between stringers is equal to the shorter panel edge length.

With b s = b and as = a, assuming b/a > 3, and using Eq. (79),
one may approximate Eq. (48) by

*For the typical values of Uo = 750 ft/sec and X = i0 ft,

one finds fT _ Ii0 Hz.
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Estimation Procedure. -- In order to estimate the fatigue life

of a honeycomb core sandwich flap element, the following procedure

is recommended:

•

•

Calculate the fundamental beam resonance frequency f

from Eq. (55). If the beam end conditions are not

well defined, take _i = 2.36.

Determine the spectral density _ (e) of the pressure
acting on the flap at frequency _ -ifrom corres_ondiny

data, or estimate it from Eqs. (i_) or (16).

• Find the maximum root-mean-square stress in the skin from

Eq. (65), if the end conditions (and the associated fund--
amental mode shapes) are well defined. Otherwise, find

that stress by use of Eq. (68). Take _ = 0.04, unless
better data are available.

° Estimate the maximum root-mean-square shear stress in

the core as the basis of Eq. (69).

•

•

Calculate Nf from Eq. (72) or (73) and find the skin

fatigue life Tf from Eq. (74) for the confidence limit
of interest• For materials other than 5052-H39 aluminum,

multiply Th by k m from Appendix C.

Calculate N h from Eq. (75) or (76) and find the honey-

comb core fatigue life Th from Eq. (77)• For materials
other than 7075-T6 aluminum, multiply Tf by k m from

Appendix C.

• Take the effective fatigue life of the entire structure

as the lesser of the values of Tf and Th.
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Fatigue Life

Facing Sheets. -- From Fig. 51 of Ref. 9, which summarizes the
results of a regression analysis of data obtained on panels with

7075-T6 aluminum alloy facing sheets, one may deduce the following

relation between the maximum skin stress _i and the number of

cycles Nf that the skin can withstand without failing:

/ _(5 1

log Nf = -4.06 log|_l
\_refl

+ log B (7o)

or

Nf = B I (ol/Oref) -_°_
(71)

Here, as before, Ore f = 103 psi; for the present case

9.22 1
log B 1 = 9.53 for the

9.75

corresponding to

I--95% 1
-5O%

o%

ll.6xio911-95 IB I = 3.4 x 109 for the -50%

5.6 × 109 0%

confidence limit, (72)

confidence limit

(73)

The discussion that follows Eq. (46) applies here again; the

fatigue life TfC of the facing sheet corresponding to the -C%

confidence limit may be found from

Tfc = Nfc/f _ (74)

where, of course, fl represents the fundamental natural frequency

of the sandwich beam and NfC is found from Eq. (70) or (71).
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rms stress associated with beam vibrations in the fundamental
mode as

a 1 = Ec(u" )max = EcU ¢'maxrms rms '
(64)

where the primes indicate differentiation with respect to the

lengthwise coordinate x, E denotes the modulus of elasticity of

the skin material, and _" represents the maximum absolute value
max

of ¢"(x).

If one combines Eqs. (60), (61), (62), and (64), one finds

that the maximum root-mean-square skin stress obeys

1

ecEJ1Cmax }p (fl )

3_ 5_
(65)

The similarit2 of the term under the sguare-root sign to the

square-root terms appearing in Eqs. (29) and (47) is obvious.

The term J1¢max" depends only on the mode shade, and thus

only on the boundary conditions. Since the mode shape,, normalized
in accordance with Eq. (57), is given (Refs. 23, 25) by

/2 sin(_x/L) for simply supported ends
¢(x) : (66)

tcosh(Sx/L) - cos(Sx/L) - ¥[sinh(Sx/L) - sin(Sx/L)]

for clamped ends

where B _ 4.730, 7 _ 0.9825, one may determine that

,, i_4_/L

J i_max
D_

37.4/L

12.6/L for simply supported ends

for clamped ends

(67)

28



where L denotes the beam's length, B its bending stiffness*, and

its mass per unit length. The parameter _i represents a con-
stant that depends on the boundary conditions_ for a beam that is

simply supported on both ends, _i = _/2 _ 1.57, and for a clamned-

clamped (or free-free) beam, _2 = 3.56. Since in a realistic flap
element the boundary conditions are likely to be somewhere be-

tween_ supported and fully clamped, one may reasonably take
_i _ ¢_±._f)(3.56) = 2.36 as a first estimate, in absence of better
information.

Resonant Response of Fundamental Mode. - In order to analyze

the response of a uniform beam in its fundamental mode in general

terms, it is convenient to introduce the mode shape _(x) associ-

ated with that mode. One may then express any time-dependent beam

deflection u(x,t) in the first mode (Ref. 33) as

u(x,t) = u(t)¢(x) (56)

The mode shape _(x) is defined physically only within a multinli-

cative constant; of the various normalizations possible, the one
chosen here (to facilitate use of available tables and references)
is

_ _2(x)dx = L
(57)

It is well known that the dynamic response U(t) of any struc-

tural mode is like that of a simple spring-mass-dashpot system
with a mass eaual to the modal mass

MI = _%2(x)dx = gL , (58)

exposed to a force that is equal to the modal force

*For a homogeneous beam of a material with Young's modulus E and

with a section having a moment of inertia I, the bending stiff-

ness is B = El.
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The following procedure is recommended for estimation of

stringer fatigue life:

i. Calculate the panel fundamental resonance frequency f

and the pressure spectral density @p(f) as in the panel fatigue
life estimation procedure.

2. Evaluate the approximate maximum rms stress _b in the

stringer from Eq. (48), using q = 10 -2, unless better dam_ing
data are available.

3. Find the corrected rms stress estimate from Eq. (49).

4. Calculate NsC from Eq. (50) or (52), and find TsC

from Eq. (54).

• For materials other than 7075-T6 aluminum, multiply
T by k from Appendix C
sC m
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between the rivet lines of adjacent stringers, H the stringer
depth (see Fig. 7), and I an effective moment of inertia of
the stringer cross-section, given by

I 2

I = I xz (48a)
xx I

ZZ

l[ere Ixx denotes the centroidal moment of inertia of the stringer
cross section about an axis narallel to the panel surface (see

Fie. 8), Izz renresents a similar moment of inertia about an axis
normal to the nanel surface, and Ixz denotes a similar mixed mo-

ment of inertia.* As nreviously, f denotes the fundamental reso-

nance frequency of a skin nanel, _ re_resents its loss factor,

and _n(f) denotes the snectral density of the fluctuatin_ excita-
tion nressure (at the frequency f).

Correction of rms stress estimate on basis of test data. --

Since the various assumntions involved in the derivation of Eq.

(_8) may renresent rather noor approximations of conditions oc-
currinK in nractical structures, one would expect predictions

made on the basis of Eq. (48) to deviate from corresponding ex-

merimental results. ComnarJson of such nredictions with experi-

mental dats (Ref. 7) indicates that the experimentally observed

root-mean-square stress Oe on the averaKe is related to the cor-

res_ondin_ _b calculated from Eq. (48) as

°b°e - (_9)
i psi 900 1 psi

The above relation was derived on the basis of calculated ob
values ranging from about 150 to 3000 psi] its applicability to

values outside this range remains to be established.

Cycles to failure; survival probabil_itys_ fat___u_life. --

Data presented in Fig. 44 of Ref. 7 indicates that the number N s

= / z2dA I = / x2dA I = / xzdA*That is, Ixx A ' zz A _ xz A ,

where A represents the area of the stringer cross-section. An--

pendix I of Ref. 7 gives expressions for these moments of inter-

tia for zee, channel, and hat sections.
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Although the time-variation of a randomly varing parameter
like the panel stress is not a simple sinusoid, and one can not
speak of cycles in the strictest terms, one may expect the _anel
vibrations to be approximately sinusoidal in time as long as they
are dominated by a single mode -- as was previously assumed in the
response analysis. One may then consider the stress signal be-
tween successive zero crossings as a half cycle, with the signal
varying approximately like a sinusoid at the natural frequency of
the system. Knowing this frequency and the number of cycles _
that produce failure_ one may calculate the fatigue life.

For failure probability distributions that are symmetric
about the mean, (50-C/2)% of the samples fail under fewer stress
cycles than the number corresponding to the -C% confidence limit
(Ref. 21). Thus, for example, if N = 107 cycles corresponds to a
confidence limit of _50% for a given panel design exposed to a
given excitation, one may expect 25% of all _anels to fail at
less than 107 cycles (i.e._ one may expect 75_ of all panels to
survive after 107 cycles).

Fatigue life. -- The fatigue life of a structure obviously

must be defined in terms of a failure probability or similar

statistical measure. Here it is convenient to use the fatigue

life corresponding to the -C% confidence limit, which one may
find from

Tc = Nc/f , (a7)

where N C is obtained from Eqs. (45) and (46) for the confidence
limit in question and f denotes the natural frequency of the cartel
under consideration.

In order to estimate the fatigue life of a given cartel, the

following procedure is recommended:

i. Calculate the panel fundamental resonance frequency from

Eq. (35), using the correction of Eq. (37) for curved panels.

2. Determine the spectral density _p(f) of the pressure
acting on the panel at the resonance frecuency f ffrom correspond--

ing data or from Eq. (15) or (16).

3. Find the maximum root-mean-square stress from Ee. (41),

modifying the result according to Eq. (42) for curved panels.

Take _ = i0°'2_ unless better data are available.
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Fig. 5.2 of Ref. 8); the estimates tend to be too high - by as
much as a factor of 5 at low stress values, and generally by less

at higher stresses. Means for improving the estimates are not
available at present.

Below are tabulated values fR/f and aR/a calculated from

Eqs. (37) and (42), taking for b2/hR the _reatest reasonable

value. This value is b2/hR = A2(a/h)max(a/R)ma x = 175 A 2, where

(a/h)ma x : 500 is the greatest likely practical value for this

ratio, and where (a/R)ma x = 0.35 is the greatest value of which

Eqs. (37) and (42) hold. For smaller values of a/h and a/R -

that is, for smaller b2/hR -- both fR/f and aR/a are nearer to

unity.

b/a 0.3 1.0 3.0

fR/f i. 55 8.45 13. i

aR/a 0.76 0.33 0.83

Panel loss factors. - Because the resnonses of oanels to

random excitation are dominated by the responses of resonant

modes, the damping of a skin panel -- as characterized by the loss
factor n -- is important in establishing the magnitude of its re-

sponse and the associated oscillatory stresses. As evident from

Eq. (29) and from the relations derived from that equation, the

root-mean-square stress varies inversely as W_-.

References 18 and 19 suggest a method for estimating the

loss factors of panels with riveted edges, taking account of such

parameters as rivet spacing, width of contact area, and oanel
wavelength (as a function of frequency). However, this method

may be somewhat too cumbersome for preliminary desi@n ourposes.

Abundant experimental evidence* indicates that for conventional

aircraft structures (i.e., for structures not provided with

special damping treatments), q differs little from 10 -2 This

value may therefore be taken as a reasonable estimate_ unless

measured data for the particular structure under consideration
are available.

*E.g., see Ref. 20. Reference 8 suggests q = 0.0085 for typical

aircraft structures, based on values between 0.008 and 0.009

reported for fuselage panels in Ref. 13, and on 0.0085 reported

for tailplane panels in Ref. 14. The loss factors of the test

panels investigated in Ref. 9 ranged between 0.005 and 0.009.
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On the other hand, if one uses the exoression (35) corresponding

to more realistic boundary conditions, one finds;

a = I.I0 an F + _ _ (40

In Ref. 9 there is derived yet another expression for a, on the

basis off a re_ression analysis off exmerimental data for

I < b/a < 3 and 120 _< b/h < 500, arranged in nondimensional
Croues of variables deduced from ideal clameed-ed_e eanel analy-

sis. This exnression (when rewritten in consistent units) cor-

resnonds to

a = 0 2a L
• an n 0_6 F- 1.68 (41

It is instructive to compare the stress estimates one ob-

tains from the three foregoing equations. Clearly, Eqs. (39)

and (40) differ only in the functions of the aspect ratio b/a

they involve and (slightly) in their numerical coefficients. If

one evaluates the aforementioned functions (Fig. 8), one finds

that for mractical values of the aspect ratio the two functions

differ by about ten percent in magnitude and exhibit very nearly
the same trend. Because of the differences in the magnitude:_ of

these functions and in the coefficients of Eqs. (39) and (40),

the stress one calculates by use of Eq. (39) is higher by a fac-
tor of about 1.2 than the stress estimate one finds from Eq. (_0

The function F _'68 which appears on the right-hand side of

Ea. (41) obviously depends more strongly on b/a than the func-

tion F 3/2 associated with Eq. (39); this stronger dependence is

evidenced by the slightly steeper slooe of the F 1"68curve in Fig.

8. The function F 16B also is found to exceed F 3/2 by about 21%

for b/a = I, and by about 67% for b/a = I0. However, Eq. (41)

differs from Eas. (39) and (40) also in the exponent on (b/h)

and in the added _-0.06 term. For the typical value of _ = I0 -2

the latter term amounts to 1.32. For values of (b/h) between

I00 and 500, corresponding to the panels used in tests which
served as the basis of develooment of Eq. (41), the value of

(b/h) I/4 lies between 3.17 and 4.72. Thus, on the average,

(b/h) 7/4 _-°'°6 F-*'68/(b/h)3/2F -3_ - (4.0)(1.3)(1.4) -I -- 3.7. If

one multiplies the numerical coefficient 0.24 by this value,

one obtains 0.90; comparison of this result with the coefficient

16



s 2 %+
a _

and that of a clammed panel obeys (Ref. 9)

C30)

-- 2_ _ F(b/a)fc -3- ab (31)

where m denotes the mass per unit area of the panel and P, its
flexural rigidity, and

F(b/a) = [2 + 362/a 2 + 3a2/b2] 1_ (32)

For homogeneous panels

Eh 3
D = , (-_)

12(1 __2)

m = Osh , (B4)

where E renresents Young's modulus, _ Poisson's ratio, and 0 s
the density of the structural material. One may thus estimate

the fundamental natural frequency of a skin-stringer panel from

hc L
= - G(b/a) (35)

f f_s fc a 2

where cL : /E/P s represents the longitudinal wave ve]ocitj*in
the oanel material and

@(b/a) = 8-
a2_ 1.25 for b/a = 1

+ _} P(b/a) -" _ (36)0.69 for b/a >> 1 .

*For most structural metals, one may take cL = 2 x l0 s in/see

with adequate accuracy. Since v 2 << I typically, Roisson's Ratio

does not appear in these approximate expressions.
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be well justified in many practical cases. Once the panel motions

have been determined, the sonic fatigue analysis method proceeds

to determine the stresses induced in the stringers as the result

of the loads imposed on them by the vibrating panels, and it then

compares these calculated stresses with experimental stress and

fatigue data.

Skin

Relation between dynamic and static stress. - In Ref. 6

analysis of the response of elastic structures to random pres-

sure fields is discussed in general terms, and simplified re-
sults are presented for the case where:

(I) One mode predominates in the frequency range of
interest.

(2) The excitation pressure is in phase over the
entire structure of interest.

(3) The spectrum of the excitation does not change

rapidly in the vicinity of the resonance fre-

quency of the dominant mode.

It is shown in Ref. 6 that if the foregoing conditions hold,

then the root-mean-square stress _ induced at a given location

in astructure (or panel) by a random pressure field may be ex-
pressed in terms of the stress G o induced at that same loca-

tion by a uniformly distributed static pressure of unit magni-
tude as

V= _ fn_p(fn ) go •
(29)

Here _ represents the structural loss factor (of the dominant

mode at its resonance), fn denotes the (cyclic) resonance fre-
quency of the dominant mode, and @ (fn) represents the spectral

density of the exciting pressure a_ the frequency fn"

Resonance frequencies of flat rectangular panels. --A meth-

od for determining the natural frequencies of multi-bay systems,

taking into account the flexural and torsional stiffnesses of

the various stringers, is presented in Ref. 7. An alternate

method, applicable to structures with many equi-spaced identical
stringers between flexurally stiff frames, is summarized in Ref.

8. These methods, however, are relatively complex; --perhaps

too complex for preliminary design purposes. It is likely also

12



corresponds to the previously chosen reference values and to the
reference frequency fref = i00 Hz. Substitution of Eq. (20)
then yields

Ls,hi freq = 153.5 +50 log -I0 log X -20 log

-20 log
T + 460

O

52O
(28)
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Overall fluctuating pressure level. -The overall fluctua-

ting pressure level LOA is a logarithmic measure (e__xpressed in
decibels) of the mean-square fluctuating pressure p2 defined
as*

= 2 ) dBLOA i0 log (p2/Pref , (17)

where Pref is a reference pressure. Substitution of Eq. (13)
into the above then permits one to write

LOA = C + 20 log (po/0re f) + 40 log (Uo/Ure f) (18)

where Pref and Ure f are reference values of the density and
velocity, and

C = 20 log (0.24PrefU2ref/Pref), dB (19)

If one chooses Pref = 0.0735 ib/ft 3 (corresponding to air at

at room temperature and one atmosphere), Uref : 750 ft/sec (a

typical core engine exhaust velocity), and Pref = 2.9 × 10-gpsi
(= 0.0002 microbar, the international standard reference value

for acoustic pressures), one obtains C _ 177.5 dB.

Since the density of a gas is inversely proportional to

its absolute temperature, one may replace the density ratio of
Eq. (18) by a corresponding temperature ratio and write

U/ _ T o + 460

LOA " 177.5 + 40 log _U--_efJ -20 log [20 '
(2O)

whe re T
O

Pressure spectrum level. -- The spectrum level of the

fluctuating pressure is a logarithmic measure (expressed in

decibels) of the spectral density Cp(f), defined as

Ls = i0 log Cp,ref(f )

represents the temperature of the exhaust stream in °F.

(21)

where @p ref(f) is an appropriate reference value, usually taken

as P2ref/Hz.

*All logarithms in this report are base i0.
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which show how_pZ/q varies in the stream-wise and cross-wise

directions along a plate inclined at various angles to an im-

hinging jet, one finds that _/q does not exceed 0.i for

X/D _> 9 and for an_les between the plate surface and flow-normal

greater than 30 ° . This value of 0.I is considerably smaller

than the value of_/q = 41 -- 4(0.12) : 0.I18 one obtains from

Eq. (5) for a normally impinging jet with the near-maximum tur-

bulence intensity I = 0.12.

The frequency-spectral density %n(_) of the fluctuating
nressures associated with nearly tang%ntial flows may again be

anproximated by Eqs. (7) and (8). The pressure cross-correla-

tion function here is more comnlex, however, being character-
ized (see Appendix A) by different correlation lengths (or

"eddy decay scales") Lx and Ly in the stream-wise and trans-
verse directions, with

L _ 13.5 V/_
X C

L -- 2.0 V /_
y c

(ii)

where

v _ o.45 u (12)
C O

represents the convection velocity of the flow.

Design Pressures and Pressure Levels

Maximum mean-square pressure. --Although one may use the
data shown in FigS. 3-6, together with the previously given

equations, to estimate the fluctuating pressures that occur at

any specific location, one usually need not consider all this
detail for design purposes. By inspection of Figs. 3 and 4

one finds that for 8 <_ X/D < 20, corresponding to typical lo-
cations where EBF surfaces may be expected to be placed normal

to the flow, the turbulence intensity does not exceed 0.12.

Since one also may note that in the high-turbulence region

(i.e. for r/D<l) the turbulence intensity decreases slowly
with X/D, approximately according to Eq. (3), one may choose

I = 0.12 for general conservative design purposes.



varies along the axis of a jet, and Fig. 4 shows how this in-
tensity varies along the radial coordinate. Here Uo represents
the jet exit velocity (which, for a fan-jet engine is taken to
be the core engine exit velocity) and u2 denotes the mean-souare
axial fluctuating velocity.

As is evident from Fig. 3, the intensity I on the jet axis
is at approximately its maximum value of 0.ii at X/D _ i0. Fig-
ure 4 shows that for X/D > 8, I does not exceed approximately
0.12. From examination o_ the peak values of Fig. 4 one may de-
termine, in fact, that for X/D > 9, the maximum value of I obeys

I _ 0.165 - 0.0044 X/Dmax
(3)

and occurs at a radial coordinate rpeak , given by

_eak _ 0.15 X
D _ - 1.0 (4)

The velocity and oressure fluctuations within the potential

core typically are much smaller than those in the flow outside

the core. Thus, for the regions of interest with respect to

blown flans, I _ 0.12 may be expected to reoresent an upper

bound suitable for conservative desiKn purooses.

Pressure Fluctuations on Flap Surfaces

Normally Impinging Jets. -- For flap surfaces on which the

jet flow impinges essentially normally, one may take the momen-
tum flux in the flow to be annihilated at the structural surface.

With this assumption, the mean-square fluctuating pressure p2___is
found to be related to the mean-square fluctuating velocity u 2
(see Appendix A) as

p2 = 402U2u 2 _ (4qi)2 (5)

where 0 denotes the local fluid density and U the local mean ve-

locity. For most locations of interest for EBF's, the local ve-

locity U is nearly equal to the exit velocity U ° and the local
gas density 0 differs little from the density 0o at the exit.
With these assumptions one obtains the above indicated approximate
equality, where
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Response Calculation

Beam. - For the purpose of illustrating the general technique,
it is again convenient to discuss the response of a uniform beam.

Treatment of more complex structures involves no different concepts,
only more intricate calculations.

From the definitions of the admittance and of the pressure

spectral density, one finds that the mean-square velocity of the

beam at any given frequency tOI obeys

OO

OO

Thus, if one knows Loth %(k,_) and Y(k,_), one may calculate the

mean-square velocity at a_y freqccncy.

Because the two functions appearing in the integrand typically

have pronounced peaks, these peak values usually dominate the re-

sponse, permitting one readily to obtain simple approximations for

the integral. Figure 22 illustrales _his belLavior for a one-dimen-

sional structure subject to simultaneous jet noise and turbulent
flow excitation.

T_e uoper part of this figure shows a sketch of the pressure

spectral density function, which for tl_is simultaneous excitation

consists of the sum of the functions due to the separate excita-

tions (see Figs. 19 and 20). Thus, %he de1_sity function here ex-

hibits one peak at the acoustic wavenumber k o (at the frequency

_ under consideration), and a second peak at the hydrodynamic

wavenumber kH. Also shown is the square of the admittance func-
tion (see Fig. 21) and the product of these two fu_ctions, which

is the integrand of Eq. (8). The relative magnitudes and loca-

tions of these peaks, of course, depend on the relative strengths

of the two excitation sources, on the structural damping, on the

structural mass and stiffness, on the flow speed relative to the

soeed of sound, and also on the frequency.

A k,_ olot like that shown in the lower portion of Fig. 22

permits one to obtain considerable insight into the variation of

the positions of these peaks. As previously discussed in connec-

tion with Figs. 19 and 20, t]_e pressure spectral peaks occur at

the acoustic and hydrodynamic wavenumbers, which correspond to

intersections of the acoustic and flow velocity lines, respective-

ly, with the fixed frequency line _ = _z. Similarly, the admit-

tance peak occurs at the wavenumber kbl = kb(_) ; this wavenumber
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Surface Pressures due to Jet Noise. - The typical behavior

of the spectral density associated with surface pressures pro-

duced by jet noise is indicated in Fig. 20. One may note that

the contour plot here is much like that of Fig. 19, except that

the contour lines here cluster about the _ = kc o line, indicat-

ing that most of the energy associated with jet-noise-induced
surface pressures travels at the speed of sound.

If all of the sound from the jet would impinge on the sur-

face at grazing incidence, all of the contour lines would col-

lapse upon the co line. In practice, however, a flap surface

is subject to sound arriving with a distribution of angles of

incidence, as well as to acoustic nearfield components, so that

there occurs a distribution of energy about the sound speed

line. Nevertheless, the peak in the spectral density at a giv-

en frequency w_ occurs at the acoustic wavenumber k o = _i/Co.

The peak of the _(k,_) hill is a notewortl_ly feature. It

represents a concentration of fluctuating-pressure energy that
generally is important for structural fatigue and noise consid-

_. _ 2z/Dj whereerations, and it occurs at the jet wavenumber kj
Dj represents the jet diameter.

Spectral Characterization of Structural Response

Admittance of Beam. --It is instructive to illustrate ap-
plication of the spectral response characterization for a one-

dimensional system, such as a beam or one-dimensional plate de-

forming in flexure; _eneralization to two-dimensional systems
then can be accomplished relatively simply. The well-known

equation of flexural motion of a uniform beam is

B --_4Y + m _2y _ p(x,t) , (4)

_x 4 _t 2

where y represents the beam's lateral displacement, B denotes
its flexural rigidity, and m its mass per unit area. On the

right-hand side there appears the exciting load per unit length
p(x,t),which is a function of the axial coordinate x and time t.
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the most extreme case,the structural response calculation then
involves the same mathematical process as for more conventional

space-time descriptions -namely, convolution of a spatial struc-

tural kernel with a load cross-correlation funotion. At worst,

the STSD approach leads to no more complexity than other approaches.

Spectral Description of Random Pressures

Spectral Densities. -- From classical Fourier analysis it

follows that a pressure wave that is harmonic over all space

and time can be represented (in terms of the usual complex vari-

able notation) by an amplitude and an exponential phase factor.

It is also well known that a general pressure function can be
reoresented as an infinite sum of such harmonic waves; this rep-
resentation is called the Fourier transform.

A pressure wave that is periodic in space and time, that

travels with velocity U in the positive x-directio_, and that

passes any fixed point at the (radian) frequency _, thus may be

described by

p(k,_)e i (kx-_t) ,

where p(k,_) denotes the amplitude of the wave and

k = _/U (1)

is known as the wavenumber. Generalized harmonic analysis per-

mits any arbitrary random pressure p(x,t) to be represented by

OO oo

i/fu(x,t)- (2_) z _(k,_)ei(kx-_t)dkd_, (2)
__OO OO

where _(k,_), the density of the amplitude distribution in k and

space, is the Fourier transform of p(x,t).

From the square of the magnitude of this density one may
determine the so-called pressure spectral density
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APPENDIX D

AN INTRODUCTION TO THE SPACE-TIME SPECTRAL DENSITY APPROACH

TO EXCITATION AND RESPONSE CHARACTERIZATION

Introducti on

As has been pointed out in the main body of this report,

the responses of flap structures to fluctuating pressures de-

pend not only on the temporal (frequency) characteristics of

these pressures, but also on their spatial characteristics.

The presently available sonic fatigue analysis and design ap-

proaches, including those summarized in the main body of this

report, avoid the complexities associated with accounting for

the spatial characteristics by making the assumption that the

exciting pressures are uniformly distributed over tl_e structure
under consideration and that the structure's most significant

response occurs in its fundamental mode. Although this assump-

tion often leads to conservative designs, one may readily show

that it need not in all cases - and, indeed, there exists some

flight data (e.g., Refs. 15 and 16) that indicate that the

structural responses are not described adequately by the sonic

fatigue analysis approaches in current use.

This appendix serves as a brief introduction to an approach
which should be able to provide a logical framework for the guid-

ance of data acquisition programs for load and response charac-

terization, and which also may be expected to lead to more real-

istic predictions. This approach, which makes use of space-time

spectral density (STSD) concepts, has been developed quite ex-

tensively for dealing with the vibrations of ship structures
induced by sound and flow (and with the underwater sound radi-

ated by these vibrations), and has been applied to such problems

with considerable success. As discussed below, it has the addi-

tional advantages of being relatively simple in concept, of lead-

ing to little computational difficulty, of permitting great ex-
perimental simplification and savings, and of leading to increased

accuracy.

Conceptual and Computational Simplicity. - For spatially

homogeneous excitation, the STSD approach permits one to calcu-
late the structural response as an integral over the product of

two functions, of which one characterizes the fluctuating pres-

sure, the other,the dynamic stiffness of the structure. The
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given by Eq. (6). The exponent B, of course, depends on the
component -- i.e., on which of the aforementioned equations
apply. The table at the end of this appendix gives the correc-
tion factors corresponding to these equations and to a wide
variety of aluminum alloys.

Estimation of Fatigue Stress Ratio. - Unfortunately, S-N

curves are available for only a few alloys. For alloys for

which no fatigue data are available, one may use the rough
approximation that

S Y
2 2

$I YI
(7)

where Y represents the yield stress of the material (Ref. 3'7).

As evident from the table at the end of this appendix, this

approximation is very close for some materials, but maj be

about 20% too high or too low for others. Nevertheless, in

absence of better information, one can do no better than to

use the above relation. The correction factors given in the

table below are based on fatigue stress ratios where these

are available, and on yield stress ratios otherwise.

Materials Other Than Aluminum. -- It should be noted that

the procedure suggested here for aluminum alloys cannot readily

be extended to other materials, unless their S-N curves have

the same slopes (on a log-log plot) as those for aluminum.

Unfortunately, most other materials have different slopes and
many - notably steels -- have segments of greatly differin_

slopes. For such materials, further analysis and/or experi-

mental investigation is required.
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APPENDIX C

FATIGUE LIFE CORRECTIONS FOR ALUMINUM ALLOYS

The various fatigue life estimates presented in the main

text were obtained on the basis of experimental data on struc-

tures made of only one kind of material -- namely, 7075-T6

aluminum for skin/stringer structures and for the facing sheets

of honeycomb sandwich structures, and 5052-H39 aluminum for

honeycomb cores. This appendix suggests how one may correct

the estimates pertaining to the aforementioned materials so

as to obtain corresponding estimates for other aluminum alloys.

Similarity of S-N Curves. -- The fatigue behavior of mate-

rials generally is described by so-called "S-N" curves, which

are plots of the fully reversed stress amplitude S versus the

number of stress cycles N at which a specimen fails when sub-

jected to cyclic stress of that amplitude. When plotted on

log-log scales, the S-N curves for most aluminum alloys appear

very nearly like parallel straight lines, at least in the low

stress and large N region [E.g., see Ref. 33 and Table 3.3.1(c)

of Ref. 34]. Although the classical S-N curves are obtained

from experiments where the stress amplitude is held constant

(for each data point), whereas the S-N curves represented by

Eqs. (45), (52), (71) and (75) correspond to random stress

variations with a given mean-square value, one may expect the

latter log-log curves for various alloys to be parallel, if
the former are parallel.

If one assumes that the root-mean-square stress a that

different alloys can withstand for a given number of cycles

is proportional to the "fatigue stress" S of the material, then

for two different materials (indicated by subscripts I and 2),

C 2 S 2

a S
1 1

(i).

For materials that exhibit a definite endurance limit (i.e., a

stress amplitude that the material can withstand essentially
for an unlimited number of cycles), one would be inclined to

*For the sake of simplicity, new equation numbering sequences

are begun in each appendix. All equation numbers mentioned in

this appendix refer to equations presented in this appendix.
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where G denotes the effective shear modulus of the core (consid-

ered as a continuum) and A represents the beam's cross-sectional

area. By equating Eqs. (3) and (4) and integrating the result

one may determine that

-B ,, (5)
Ws - AG Wb '

Fundamental Natural FreQuency. - Substitution of Eq. (5)
into Eq. (2) yields

,,. _ _ _2 (w b B ,,) (6)Wb B - A--GWb

For a deflection given by

wb = w 0 sin _xL ' (7)

which corresponds to the fundamental mode of a simply supported
beam, Eq. (6) yields

where

i + _2B -: Cb (8)
L2AG

wb (9)
L 2

may be recognized as the classical exnression for the natural fre--

quency, corresponding to the case where shear effects are neglected

(i.e., where AG_ the shear stiffness per unit length, is assumed
infinite).

Flexural and Shear Stresses. -- The flexural stress in the

outer-most skin fiber, taken to be a distance c from the neutral

axis, may be found from elementary beam theory to be given by

,, = Ec(w/L) 2o = -Ecw b w o sin(wx/L) , (i0)

63



The parameters L x and L_ represent the eddy decay scales in the
flow and transverse directions, respectively, and obey

Lx " c (22)

L 2 v /1 1 (23}
y c

The pressure field described by Eqs. (17) to (23) is the

same as that associated with a turbulent boundar:j layer, except

for the numerical constants that appear in Eqs. (21) to (23).

Detailed interpretations of such fields are siven in Ref. 29;
some salient features are summarized below.

Because the hydrodynamic wavenumber k h appears in the de-

nominator of Eq. (18), the wavenumber spectrum %x(kx) is asym-

metric in k x. This asymmetry represents a mean convection of
the fluctuating pressure field in the positive x-d_rection with

a velocity V c. The fact that Lx and Ly ha',e finite values ac-
counts for the decay of the correlations with increasing separa-

tion. Inverse variation of Lx and Ly with frequency (in keeping
with the "similarity hypothesis" of' Ref. 32) accounts for the

decrease in the correlation lengths with increasing frequency.

Figure l8 indicates qualitatively how %o(k,w) varies with k

and ky at a fixed value of _. The peak val_e--of %p(k,w) occurs x

at k x = kh, ky = @. Because L x > Ly, the shape of tKe %o(k,_)
function is much more elongated in the ky than in the kx_drrec-
tion. Since the peak occurs at the nonzero wavenumber kh, there

is a region centered around the wavenumber vector k = (kh,0) over

which @p(k,w) has relatively high values. This region, which is
important--in relation to vibration response, is known as the "con-
vective region" of the wavenumber plane; its location and extent

clearly are frequency-dependent.
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Comparison of estimated and measured spectral density. - The

frequency spectral density p2@n(_) of the fluctuating p:.essure

measured (by means of a small flush-mounted microphone) on a half-

scale EBF model, at a point near the axis of a cold jet (at X/D =9,

with UL -" 750 fps, pressure ratio 1.4) is shown in Fig.16, together
with an estimate based on Eqs. (5), (7), (I0) and on Fig. 3. Con-

sidering the courseness of the various approximations that underlie

this estimate, the agreement between it and the data is quite

re asonable.

Estimation on Basis of Boundary Layer Flow

Turbulent boundary layer pressures. -The foregoing estima-
tion approach was based on the assumption of momentum annihila-

tion, and thus in essence assumed flow impingement essentially
normal to the flap surface. However, since at least at some lo-

cations on the flap the flow is essentially parallel to the sur-

face (see Fig. 17], it is useful to consider a model of the fluc-

tuating pressure on an EBF that resembles tkJat for a tu_bulent

boundary layer.

Extensive data on pressure fluctuations produced at the

surface of a flat plate by a jet impinging at various angles

are reported in Ref. 5. Figures 5 and 6 reproduce some of this

non-dimensionalized data, showing how the root-mean-square pres-

sure p_--_ varies along the plate surface. One.__may observe that

for fixed X/D and 8 the mean-square pressure p2 varies slowly

with the distance x along the plate, indicating that the fluctu-

ating pressure field is spatially inhomogeneous to a slight ex-
tent. As evident from Fig. 6, this inhomogeneity decreases at

increasing distances X from the jet exit plane.

From Figs. 5 and 6 one may find that p_q _ 0.I provides

an upper bound for boundary layer pressures on typical EBF con-
figurations (8 -- 30 °, X/D : 9). From Eq. (8), on the other

hand, one finds that for normally impinging flow (with I : 0.Ii),

Tq = 0.44.

Examination of data of Ref. 5 pertaining to the frequency

spectra of fluctuating pressures on the surface of the test plate

(see Fig. 5 for test geometry) indicates that the normalized fre-

quency spectrum _n(m) of the fluctuating pressures for the turbu-
lent boundary layer case has the same shape as that for the nor-

mal impingement case. Thus, one may estimate that the spectral
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where

1 pu2° (8a)q = _-

denotes the dynamic pressure at the Jet exit and

T = u_U ° ( 8b )

represents the axial component of the turbulence intensity on

the axis at the axial distance X of interest. Figure 3 shows

how I varies with X; note that for the typical location X/D -- 9

for an EBF, one finds I _ 0.Ii.

Normalized correlations and frequency spectrum. - From

Eqs. (1) and (6) one finds that the normaZ_zed time-correlations

of pressure and velocity obey

Cp (0,'_) CutV,x)
-- = e

_p(o,o) Cu(O,O)
(9)

The normalized frequency spectrum Cn(W) is the Fourier transform

of the normalized correlation, so that the normalized frequency

spectrum of pressure (or velocity) obeys*

Tf/w
i e-ITl/Tf ei_Td_ - (i0)

Cn (_) - 2w i +_2 2
Tf

Wavenumber-frequency spectrum. -- The general space-time

correlation Cp(X,t) is closely related to the corresponding
wavenumber-freq[ency spectrum Cp(k,w), where x = (x,y) is a
two-dimensional position vector (representing--the Cartesian co-

ordinates x and y of the observation point in the plane of the

flap and k : (kx,ky) is the corresponding wavenumber vector.
For spati_lly homogeneous and temporally stationary fields

(Ref. 29 ),

*Unless otherwise indicated, all integrations are to be

taken from negative to positive infinity.

57



Estimation on Basis of Momentum Flux

Pressure-momentum relation. - At any given location in the

jet, the axial momentum flux may be written as 0(U + u) z in terms

of the fluid density 0, the mean axial velocity U and the fluctu-

ating axial velocity u at the location of interest. If this mo-

mentum flux is entirely annihilated as the jet impinges on the

EBF surface, then the fluctuating component p of the pressure

acting on the surface is of the order of the fluctuating compo-

nent of the momentum flux. Thus, for the usual case where the

fluctuating velocity component is much smaller than the steady

component (u << U), one obtains

p _ 20uU . (I)*

@p (T) of theCross-correlations. -- The cross-correlation iPz

pressures pl and P2 at two different locations on the flap, de-
fined as

_bp (1:) = < p (t)p (t + T) >zp z 1 z

thus is related to the corresponding velocity cross-correlation

U U
1 2

(_) = < u (t)uz(t + _:) >
i

as

@p (T) = 40ZUiUz@u u2(T) • (2)lP2 1

In the above expressions, the brackets <...> denote averaging

with respect to time t; T represents a time interval, and U l

and Uz denote the mean velocities at the two locations of
interest.

In order to obtain some simple estimates readily, it is

convenient to consider locations near the Jet axis (i.e., near

point A of Fig. 2) in a plane normal to that axis. Data for the

velocity correlation _ulu_0) for this special case (Refs. 27,28)

*For the sake of simplicity, new equation numbering sequences

are begun in each appendix. All equation numbers mentioned in

this appendix refer to equations presented in this appendix.
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that are closely related to those whose fatigue data were used

in development of the technique, its reliability is much reduced
for other structures. Accumulation of a more extensive data

base is recommended, particularly for the types of configura-
tions and materials likely to be used for future externally

blown flaps.

Because of the great potential utility of the space-time

spectral density approach, it is recommended that application of

this approach to EBF and related problems be pursued vigorously,
both in relation to characterization of the fluctuating pres-

sures produced by the impingement of engine exhaust on flap sur-
faces and in relation to the estimation of structural response

spectra.
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M 2 +Fy2P-Fx2Q - 1282 +ke(2,o)(e2-e 0) +k
e(2,Z) (e2-el) +ke(2,3) (e2-e 3

-kx (2,0) [x2-K-J@ 2 ][J-K@ 2 ] - ky (2,0) [Y2+J-Ke2 ] [K+Je 2 ]

-kx(2,1)[x 2 - xI -G-N-H8
z - Le2][L -Ne 2 ]

+kY (2,1) [Y2 - YL + H + L - oe z _ Ne2][N + Le2]

+kx(2,3)[x 2-x 3+R+U+se 2 +Te3][s_Re2]

+ky (2,3) [Y2 - Y3 - S - T + Re 2 + ue3 ][R + $8 2 ]

Fx3 = m3x3 + kx(2,3)[x2 -x 3 +R +U +Se 2 +Te3]

Fy 3 = m3_ 3 + ky(2,3)[y 3 - Y2 + S + T - R@2

M3 - Fy3W - Fx3V = I3@ 3 + ke(3,2)(8 3 -e 2)

-kx(3,2)[x 3 -x 2 -R -U- se 2 _ T8
3][T- U@3]

-k [Y -Y2 +S +T-ke 2 U@y(3,2) 3
3][u + _e 3]
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Fx3 = m3x 3

= m3_ 3
Py3

M3 + Fy3

+ kx(3,2)[_3 - %2](3,2)

+ ky(3,2)
- _2 ] (3,2)In 3

_3_
C-w) - Fx3v = 3

+ ke(3,2)
(e 3 - e 2)

_kx(3,2)[_3- %23(2,0)

-n2](2,0)
+k_, (,3,2)[U 3

[TcoS6 3 - usine 3]

_ Tsin@ _]
[_UcosO 3

whe re

[_I- to] (].,o)

in i- no](__,o)

[_m- _2] (m,2)

[n 1- _2](1,2)

2_2 - %o3(2,°)

in2 -nol(2,°)

In 2 -hi J(2,

[-_2- g3 ](2'3)

In 2 -n3](2,3)

[_3- _2_(3'2)

-n2](3,2)

= x I + (-()cos61 - Bsin61

+ 3cos@ I + (-C)sin@l
= Yl

= x I - x2 + Gcos@ I

_ Ecos61
- Y2=Yl

= x2 + Kcos@ 2

= Y2 + Jc°Se2

+ Ncos@ 2 + Hsin@ I

_ Lcos@ 2 + Gsin91

_ usin92

_ Ksine 2

= _ l_ I-_23(m,2)

= - [_i- n2] (1,2)

= x 2 - x 3 + Rcos6 2 + Ucose 3

_ Scose 2 - Tcose 3
= Y2 - Y3

= - [_2-¢3 ](2,3)

= _ In 2-n 3](2,3)

+ Lsin92

+ Nsine 2

+ Tsin9 3
+ ssin62

+ Rsine 2 + Usin6 3
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X1(o,1)

YI(0,1)

xl(1,B)

Xal

Yal

= -C

= B

= G

= D

= D

= E

- -I_

X2(0,2)

xB(2,3)

-_ -U

= T

= J Y3(2,3)

Y2(O ,2) = -W

= -N Xa3

X2(1,2) = V

= L

- R

X_(2,3)

Ya3

= -S

Y2(2,3)

= P

Xa2

M I + FylD -

of motion for this

= Q
Ya2

- The equations

e written as
conflgu

Fxl -_ mlS_l+kx(l'O)[_l" _0 ](I,0)

+ _(i,_)[nl- n_](i,2)
-no3(l c)

+ky(l,0)[nl ' 62 ]= relyI

F_I __o ] + k_( i _)[_i

- ii'61 + k$(_,o) [_l
Pxl c = _ csin_) I]

_ kx(i,o)ttl- %o I {i,o) [Bc°se]-
+ Gsine l]

_ Bsin6 1]

- qO] (1,O) [-Cc°s_ I

+ k_(l,o) [n_
+ Hsin_ 1 ]

+ ky (1,2)[.nl "n23 (l'2)[Oc°sel



+ F X - F Y = I _ + k ((}n n-l)
Mn yn an xn an n n e(n_n-l) -e

+ ke(n,n+l) (6n- 0n+l) + ...

I I I +x sin nl-kx(n,n-l) _(n)- _(n-l) (n,n-l) Yn(n,n-I c°Sen n(n,n-l)

I +x sin0n1+-kx(n,n+l) [(n)-[(n+l) (n,n+l) Yn(n,n+l c°Sen n(n,n+l) "'"

+ ky (n ,n+l) In (n) -_(n+l)l (n,n+l) IXn(r_,n+l
- Y sin ]+

c°Sen n (n,n+l) On """

(98b)

Here mn represents the mass of the nth flap element, and In
denotes the moment of inertia of that element about its center

of gravity. Fxn and Fy n denote the unsteady components of the
aerodynamic force acting on the nth element in the x and y co-
ordinate directions, respectively, and M represents the aero-

dynamic moment. Furthermore kx(n,s) represents the stiffness
of the spring, in the x direction, connecting the nth and sth

elements; ky(n,s ) represents the stiffness of the corresponding
spring acting In the y direction; ke(n,s) denotes the (rota-
tional) stiffness of the rotational spring connecting these

two elements. Also, if one lets _(n)(n,s) and _( s) re-
present the x and y displacement components of _tachment

point between the nth and sth elements which is located in the

nth element, one finds from Eqs.(97) that one may write

= + X cos9 - Y sin0
[(n) (n,s) Xn n(n,s) n n(n,s) n

n(n)(n,s) = Yn + Y )cose + X sinen(n,s n n(n,s) n

(99)
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GENERAL TWO-DIMENSIONAL EQUATIONS OF MOTION

OF MULTI-ELEMENT FLAP SYSTEM

Idealization

Masses and Springs. -- In order to idealize a multi-element
flap system as a two-dimensional (planar) dynamic system, it is

convenient to consider each flap element (consisting of airfoil,

guide-rails, and supporting structures) as a rigid body, and to

take each such rigid body as connected to each other body at a

single point by one set of springs -- each set consisting of a

single spr_ng acting in the x-direction, one acting in the y-

direction, and one acting rotationally. Thus, the flap system,

as modeled in two dimensions, reduces to an array of planar

rigid bodies interconnected by springs, as shown in F_g. i0.

A schematic representation of the inter.connecting sprimgs is
shown in the lower part of thaiJ f_gure.

One may obtain the spring consta1_ts (a_J_LTtically or experi-

mentally) and the effective attac_ent poin_ locat_ns by dis-

connecting all attachments except t_e one of i_terest, molding

all bodies fixed except the one of i_terest, applying a force or

moment, and observing the resulting displacements.

Coordinates Attached to Flap Elements] _otation. - It is
convenient to select a Cartesian coordinate system attached to

each flap element, with the origin of this system located at

the element's center of gravity, and with the system's X-axis

aligned parallel to the x-axis of an inertial reference system

(attached to the wing) when the flap is in its static equilibrium

configuration. This coordinate system serves to locate the
various force-application points (i.e., the aerodynamic force

locations and the interaction spring attachment points) on the

element with respect to the element's center of gravity. Figure

ii shows the coordinate system on a typical flap element and

indicates the notation used in the present analysis.

Equations of Motion

Displacement of General Point on Flap Element. -- One may
readily find (see Fig. 12) that a typical point P, whose coor-

dinates are (X,Y) in the system attached to the nth flap, is
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and from Eqs. (55) and (81) one may determine that for f >> fT'

nlr °2ref i°ref X

CfCp(fl) z 4.8 nl\--_-o j E (96)

For typical orders of magnitude for the various parameters, one
finds that

°refr 2 31
so that, taking the middle value of B from Eq. (73),

Th ~ 2.6xi011

Tf 3.4xi0 9 (15) 2.99(50) _'°6(i)i°'6(i_)7"°5 [(4.8)i0-2(46)]I'495

_.6x10 -9 .

Thus, one generally would expect core shear fatigue failures to

occur long before facing sheet failures.* In designing a flap

element it thus appears logical first to select a core that

has the required fatigue life, and then to verify that the

facing sheet will endure at least for the same time span.

Tables III and IV, which have been derived from the parts
of Eqs. (92) and (94) that pertain to flap elements with high

natural frequencies, indicate the factors by which the facing-

sheet and honeycomb-core fatigue lives change as the result of
changes in the various structural and jet parameters. Clearly,

the one most significant structural parameter is the unsupported

span length L; a mere 10% decrease in L may be expected to

increase the fatigue life of the skin by a factor of about

4.5, and that of the core by about 3.6.

*No comparable experimental data appear to be available.
Such data as are available (Ref. 9) pertain to panels, rather

than beams, and are affected by stress raisers (e.g., fasteners)

that reduce the skin fatigue life.
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Equations (90) and (91) exhibit all structural parametric
dependences for the low-frequency case, where _p(fl ) is essen-

tially independent of frequency. But, since _(fl) does vary
significantly at the higher frequencies, the alorementioned equa-
tions need to be modified. If one substitutes for @p(f) from
Eq. (81) and again uses Eq. (55) with _i = 2.36, one obtains

i 31 _'1"S IS B2" 5 45 r12"°3 i for f<<fT

Tf L 6"12 (ecE) 4,06 X2°3 Po o

10 s_ 4.o6 _ (92)

1.45 --- for f >> fT
4-06 U 10.).5

_0 515 Llb,.24 (ecE)4.06 Po o

As previously, the first set of parenLi_eses in eacr, expression
encloses the structural parameters, the sec_,nd the .jet parameters.

Core. -By substitution of t:e cycles-to-fai!_:re relation

of Eq.---_6) and the natural frequency expression of _ _. (55),
again using _l = 2 36, into the fatigue life ecuatio_ Ea (77)

and by usir_g also the stress expressions of Eqs. (68) and (69),

one may find that the honeycomb core fatigue life T obeys

Th/9.3 x 10n

(93)

The second form of this expression involves the parameters intro-

duced after Eq. (90) and is presented here in order to demonstrate

the dimensional consistency of this result.
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given engine also are likely to have only minor significance.
On the other hand, the exit velocity Uo is of great importance;

a mere 10% increase in this velocity can reduce ti_e panel fatigue

life to about one-third of its original value.

Table II is analogous to Table I, but pertains to stringers.

From Table II, which is based on the part of Eq. (87) that ap-

plies for f >> fT, one may observe, for example, that doubling

of the panel edge length a (which is also equal to the spacing
between the stringers) increases the stringer fatigue life by

a factor' of 1.91, whereas doubling the stringer lengti_ b reduces

the fatigue life to 0.47 of its former value.

By comparing Eqs. (83) and (87) or Tables i and ii one finus

ti_at the panel fatigue life is much more sensitive to param:ter

changes than is the stringer fatigue life. It is a]_:o evid_ n_
that increases in i_ and cj, as w.;ll as decreases in e,serve to

increase the panel fatigue li_'e, while tl_ey resul_ in _.eductlol_s

in the stringer fatigue life.

From Eqs. (80) and (86) one .ay dekermine t_at tl_e ratio of

oanel to stringer fatigue life oo_ys

! - 23o Cz p(f)! (ss)T s

If one introduces @p(f) as given by gq. (81) for f >> f'T, if one
substitutes for f from Eq. (79), and if one takes I _ H3h/2

(which corresponds to an 1-beam of height and flange width H,

with flange thickness h), one finds that one may approximate the

above expression by

Ts \a!
lcL\

2.02. 6

(89)

for the purpose of making order-of-magnitude estimates. Substi-

tution of the middle values of B and Bs given in Eqs. (44) and

(53) and of typical orders of magnitude of the various ratios

then leads to
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ab 0 014 Hb2 /_ hcL_p (f)-_ . . (84)
I _ T]

The "theoretical" maximum stress given by Eq. (48), how-

ever, must be corrected according to Eq. (49), if one desires
a better representation of the actual (experimentally observed)

maximum stress qe. Substitution of Eq. (84) into (49) indicates

that that stress obeys

• - , (Sb)

aref i are f

where _ref = 103°si' as before.

By combining Eqs. (85), (79), (52) and (54) one o0tains

the stringer fatigue life T s as

Ts _ 0./48 Bs \CL*p(f

274

a 2 lore f _ 0,274

= 0.48 B s (hCL)l'z74b1.°96 H

(8d)

where the first form again groups tl_e parameters to display the
dimensionless correctness and the second shows the parametric

dependences more clearly.

If one again uses Eq. (81) to account for the dependence

of @o(f) on the oanel resonance frequency f, which frequency

agaih may be approximated by Eq. (79), one may find that
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DEPENDENCE OF FATIGUE LIFE ON JET AND STRUCTURAL PARAMETERS

Skin-Stringer Flaps

Skin Panels. - In order to display typical parametric de-

pendences conveniently, it is useful to focus on commonly used

skin-stringer configurations that have aspect ratios b/a > 2.5.
For such configurations, the function F(b/a) of Eq. (32) may

be approximated by v_(b/a) and the function G(b/a) of Eq. (36)

may be taken as equal to 0.69.

If one takes the maximum panel stress t_ be given by Eq.

(39), with the coefficient 1.18 replaced by 0.90 in accordance
with the discussion presented after Eq. (41), then one finds

by use of the above indicated approximations that

cLa2$ (f)11_
,a = 0.395 '_

h _

(78

and that the fundamental natura± fre ;uency of the skkn panel

obeys

f _ 0.69 hCL/a2 (79

Substitution of Eq. (78) into (45), and substitution of the

result and of Eq. (79) into Eq. (47) yields the following ex-

pression for the panel fatigue life:

T = Ii0 B__hhth\\!/a|2_°
c L

3O

= II0 B 2 i, 30
h 5.9o [q (; re f

a260 CL330 _¢p (f)

(80)

The first form of this equation groups the parameters in a man-

ner that displays its dimensional correctness, whereas the sec-
ond form indicates the parametric dependences more directly.
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Core. - Only very few core shear fatigue failure data points

appear to be available_ the data do not suffice for regression

analysis, and thus one can not establish confidence limits.

Perhaps the best one can do at present is to accept the de--

sign data indicated in Fig. 86 of Ref. 9, although the basis for

that figure is not indicated. From the curves in that figure one

may deduce the following relation between the number of cycles Nh
that will induce failure in 5052-H39 aluminum alloy honeycomb

core, the maximum rms core shear stress _, and the core density d:

\_ref/ \ ref/
(75)

or

• t 1 0,,6

(76)

Here Tre f : i psi is a reference value of shear stress and

i ib/ft 3 is a reference value of density.

dref

Since not enough data are available for the determination of

confidence limits, it appears reasonable to assume that the fore-

going expressions pertain to the 0% confidence limit. In order to

estimate the numbers of cycles to failure corresponding to the

-50% and-95% confidence limits (probably conservatively)_ one may

mutliply the value of Nh obtained from Eqs. (75) or (76) by 0.4
and 0.I, respectively.*

The honeycomb fatigue life ThC corresoondin_ to the confi-

dence limit C, of course, may be calculated from

ThC = NhC/fl • (77)

*These factors correspond approximately to the ratios of the con-

stants in Eq. (53). The factors corresponding to Eqs. (46) and
(73) are larger than those given here, hence would lead to less
conservative estimates.
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If one uses the geometric average (21.7/L) of the above values,
in view of the uncertainty of the actual boundary conditions, one
may rewrite Eq. (65) as

. , (68)
Crl " ijL2f:34 rli (pB3) 1---_ 1

where the latter expression was obtained by substitution of Ea.

(55) with al = 2.36.

Maximum Root-Mean-Square Shear Stress in Core. -- In Appendix

B it is shown by means of an analysis that parallels that ?re-

sented in Ref. 26 that, for a simply supported sandwich beam, the
ratio of the maximum shear stress T in the core to the maximum

tensile stress in the skin obeys

t
wB s

--= _ 71 --- (69)
LAcE L

1

where A represents the cross-sectional area of the beam. The

approximate equality applies for a beam with a rectangular cross-

section, with skin of thickness t ; this aooroximate expression

may suffice for the evaluation of a rough estimate in cases where

not enough information is available to apply the more comolete

expression.

For beams with other than simply supported boundaries, the

simple analytical approach of Appendix B does not work and results
like the above cannot be obtained readily. It is therefore sug-

gested that Eq. (69) be used for estimation purposes, regardless

of what the boundary conditions are.

Loss Factors. - The available data pertaini_g to loss factors

of honeycomb core sandwich structures are extremely limited.
Reference 9 reports test results for about 30 different panels

vibrating in their fundamental modes. Their loss factors were

found to lie between about 0.03 and 0.05, and to be comparable to

a value of about 0.04 measured on panels obtained from aircraft

development programs.

In absence of more directly applicable data, an estimate of

= 0.04 appears to be reasonable.
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Fl(t) = I lo(x,t)@(x)dx =
A

LeP0(t) ¢(x)dx , (59)
O

and with a modal stiffness

k I = (2wfi)2 M I (60)

In the above expressions, p(x,t) represents an arbitrary pressure

distribution over the beam, p0(t) denotes a pressure that is
spatially uniform, and e represents the beam width (see Fig. 9).

Note that here M I is equal to the total mass of the beam.

For a simple spring-mass-dashpot system subject to random

excitation, one finds that the root-mean-souare displacement U
obeys (see Refs. 23, 24) rms

Urms = 2_ k2
1 1

(61)

where __ represents the spectral density of the force F (t) and n l
denotesSthe loss factor of the system, i.e., of the beam in its

first mode. Since the spectral density _F of the force is _ro-

portional to the mean-square force, _F is related to the s_ectral

density _p of the pressure p0(t), in view of Eq. (59), as

CF = e2j2_ ' (62)i p

where

L= ¢(x)dx (63)
Jl o

Maximum Root-Mean-Square Stress in Skin. -- For a given amount
of beam flexure, the greatest skin tensile and comnressive stresses
occur in those fibers that are farthest from the beam's neutral

surface. If c denotes the distance from the neutral surface to

the farthest fiber (see Fig. 9), then one may write the maximum
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FATIGUE LIFE OF HONEYCOMB-CORE SANDWICH FLAPS

Overview of Estimation Approach

The fatigue of flat, rectangular panels of honeycomb sand r.
wich construction is discussed in Ref. 9 on the basis of classi-

cal thin-plate theory. Earlier data cited in that report indi-
cate that this theory yields good approximations to observed

vibration and stress responses associated with the fundamental

panel mode, and that shearing of the core plays no important role,
unless this core is very flimsy.

A flap element, however, may be expected to behave more like

an end-supported beam than like an edge-supported panel. The

analytical results available for panels thus do not apply to f]a_

elements directly, although one may hope that honeycomb panel

fatigue data will also be useful for honeycomb beam fatigue life

estimation. The following paragraphs, thereSore, _irst summarize a

corresponding beam analysis and the_ apply related available fa-

tigue data to develop a fatigue life estimation approach.

Beam Response

Resonance Frequency_. -- In order to simplify the analysis,
it is useful as a first approximation to assume the fluctuatin_

excitation pressure to be uniformly distributed over (one surface

of) a flap element, and to consider only the response of the first
mode of that element modeled as a uniform beam -- in a similar man-

ner somewhat analogous to that used in skin-stringer panel analyses
or honeycomb sandwich panel analyses (Ref. 9).

The resonance frequency of the first mode of a beam is given

(e.g., Ref. 22) by*

_i _F (55)fl -
L 2

*This expression is based on the assumption that shear effects are

negligible. As shown in Appendix B, the finite shear stiffness
of a beam reduces its natural frequency, but in most oractical

cases this reduction is insignificant.
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of cycles that a stringer survives before failing is related to

the experimentally observed maximum rms stress _e in it accord-
ing to

+ log B (50
S

where Ore f = 103 psi is a reference stress value as before, and

6"98
log B s = 7 57

7 94 -95% 1
for the 50% Confidence limit (51

o%

Equations (50) and (51) may also 0e rewritte_l as

/_ )--2._,, (52Ns = Bs(°e _.ef

B
S ti5x1°61= 7 × 107 for the -50%

7 × 107 0%

Confidence limit (53

The discussion and the relation between confidence limits

and failure probability presented (in relation to cartel failures)

in the paragraphs following Eq. (46) apply equally well to string--

er failures, as does the discussion of fatigue life. In analogy

to Eq. (47), the stringer fatigue life TsC corresponding to the
--C% confidence limit obeys

TsC = NsC/f , (54)

where NsC is found from Eq. (50) or (52) for the confidence limit

of interest and f, it should be recalled, denotes the natural

frequency of the panel.
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• Calculate NC from Eq.
Eq. (47).

(45) or (43), and find T C from

, For materials other than 7075-T6 aluminum, multiply TC

by k m from Appendix C.

Stringers

In typical skin-stringer structures, fatigue failures of

stringers usually occur at the clip attachment (where the stringer

is joined to the frame or bulkhead), because of the presence of

stress raisers in that location. Because of the general complex-

ity of the problem, little analytical work has been done on

stringer fatigue, and since stringer failures generally occur in

the interior of practical structures, there appears to exist no

quantitative field data. Reference 7 contains the most defini-

tive available analytical and experimental information; it is on

that report that the following d_scussion is based.

Analytical estimate of maximum1.oot._mean-_saua1'e stress.-
The analysis of stringer stresses presented in Ref. 7 is based on

the following assumptions: (I) Tl_e total force acting on a stringer

corresponds to the net shear foz_ce (i_itegrated distribution minus

corner reactions) that acts at the edge of a simply supported

panel_ which is deflecting in its first mode, in response to a

pressure that is uniformly distributed over the panel, but vary-

ing randomly in time. (2) The force acting on a stringer is dis.-

tributed uniformly along its length and acts on the rivet line.

(3) The maximum stress in the stringer occurs in flexure at the

clip attachment point, where the stringer is taken to be clamped

with respect to bending.

With these assumptions one finds that the maximum root-mean--

square stress in a stringer obeys*

:s)12 3/2 Hbs s +
mb - 7_ I _ 7 ,

31T S S

(48)

where b denotes the stringer length (which is usually, but not
s the distance

necessarily always, the longer panel edge length), a s

*This relation follows from Eq. (67) of Ref. 7. However, there
, !

the numerical coefficient, which here is 23_/3_ 7Z _ 0.0171, was
erroneously omitted.
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It should be noted, however, that air flow along a panel may
extract energy from the panel vibrations, and thus increase the
effective structural loss factor - or that this flow may feed
energy into panel vibrations (under conditions approaching panel
flutter), and thus decrease the effective loss factor. At pre-
sent there is available no means for estimating this effect, and
one can do little better than to evaluate it on the basis of
experimental measurements.

Cycles to failure_ survival probability. -- One may exoect
that the number of stress reversals a panel can withstand de-

creases as the stress amplitude increases. Related test data,

corresponding to skin-stringer panels of 7075-T6 aluminum allo_1

exposed to random noise, are given in Fig. 34 of Ref. 9, together

with curves representing various statistical confidence limlts.
Later test data (Ref. 7) were found to fall within these same

confidence limits_ the design homographs given in Refs. 7 and 9
are based on these confidence limit cu_ves.

From the curves of the above_.memtione_ _ig. _q of Ref. 9 one

may determine that tl_e number N of cycles t_at a panel survives

before failing is related to the maximum root-mean-sa,lare stress

according to

log N _ .-4.60 log{_) + log B ,
\ ref

(43)

where are f = 103 psi is a reference stress value, and

ii381log B = 75

o4

Alternately,

-95%
for the -50% Confidence limits (44)

o%

one may express the above relation as

N -- B(_/_ref) -4'6° (45)

with

xi091IiB = 6 × i09 for the _50%

0 8 × i09 0%|

Confidence limit (46)
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1.18 of Eq. (39) indicates that the stress estimates one obtains

by use of Eq. (41) on the average are about 30% lower than those

one obtains on the basis of Eq. (39), and, similarly, to be about
20% lower than those one finds from Eq. (40).

It is imnortant to note_ however, that Eq. (41) was derived

on the basis of experimental data (Ref. 9) on test panels with

aspect ratios a/b between 1.0 and 3.0 only, so that the validity

of this relation for larger aspect ratios remains uncertain.
Furthermore, the test data points (see Fig. 69, p. 138 of Ref. 9)

exhibit a _ood deal o_ scatter, with a large number of the points

deviatin_ considerably from the re_ression line. It thus is not
clear whether the use of the somewhat more comolex Eq. (41) is

justified _nstead of Eq. (39) with a reduced coefficient that

makes this equation correspond more closely to the available data

for b/a _< 3.0.

In view of the fact that Eq. (41) has gained some accep-

tance, has been reduced to nomograph form, and ha_ been com-
pared with some experimental data (ti_ough K_ct well docu-

mented) other than that on the bssis of which it was derived,

it seems logical to retain it for stress estimation purposes.

However, for the purpose of studying trends and oarametric de-

pendences, the simpler Eq. (39), with the coefficient 1.18 re-

placed by 0.90, is likely to be advantageous.

Maximum root-mean-square stress in curved panels. -- On the

basis of analytically developed expressions, in which empirically

derived corrections have been included, the maximum root-mean-

square stress o R (at the middle of the straight edge) in a cy-
lindrically curved panel with radius of curvature R has been

found (Ref. 9,7) to be related to the corresponding stress in a

similar flat panel as

_R_ _ I I-3_ II + 0.453 b(___)(A4 +A2 +0"0349.62A2 + I) I , (42)

where, as before, A = b/a = length of curved edge/length of

straight edge and f/fR is given by Eq. (37).

The applicability of this relation is limited to

0.3 _< b/a _< 3.0, a/h _> i00, and a/R _< 0.35. On the whole,
stress estimates for curved panels obtained on the basis of Eq.

(42) or corresponding nomographs correlate more poorly with

test data than do similar estimates for flat panels (e.g., see
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Resonance frequencies of cylindrically curved panels. -The

fundamental natural frequency fR of a cylindrically curved panel
with radius of curvature R is related to the natural frequency f

of a flat panel with the same thickness h and edge dimensions
as _

fR I 0 006(b2/hR)2 Ii_7_ I + "
A _ + 0.61A 2 + I

(37)

where A = b/a, and a denotes the length of the flat edge of the

panel, and b the length of its curved edge. The above relation

was developed seml-empirically, on the basis of experimental

data on structures with realistic boundary conditions, and is
valid only for h/a _< I/i00 and for aspect ratios in the range

0.3 < b/a < 3.0, and for a/R _< 0.35.

Maximum root-mean-square stress in flat pane_s. - In a

simoly supported panel, the maximum flexural stress associated

with uniform loading or with the first vibratory mode occurs at

the panel center. In a rectangular panel that is clamped on all
edges, the corresponding maximum stress occurs at the middle of

the longer edge. In oractical skin-stringer structures, panel

fatigue failures typically occur along the edges, at the rivet
line or at the ends of stringer flanges or doublers (Refs. 9,
17); thus,the panel stress associated with fatigue corresponds

more closely to the maximum stress in a clamped panel than to

that in a simply supoorted panel.

The maximum flexural stress ao induced in a clamped panel
with b _> a by a uniformly distributed static pressure of unit
magnitude is given (Ref. 9) by

- F-2 (38)
a 0 max _ 2

where F = F(b/a) is given by Eq. (32).

If one substitutes the foregoing for c o into Eq. (29), and
if one takes the natural frequency f to be equal to that for a

clamoed olate, one obtains the maximum rms stress as

a -- !.185 _ an _!
F -3& (39)

*This expression results from Ref. 9, if a misprint in that

report is corrected (see Ref. 12). Note: The expression aopear-
ing in Ref. 7 also is ooviously in error.
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that they give results whose precision is much greater than
necessary, in view of the considerable uncertainty in (I) the

estimated pressure spectra, (2) the validity in any practical

case of the assumptions involved in the development of Eq. (29),
and (3) the boundary conditions operative in practical struc-

tures. Furthermore, fatigue data have been accumulated only

for the lowest modes, so that application of this data to fa-
tigue prediction for any given structure of a material or con-

figuration different from those for which data is available, or

to hi_her modes, is likely to introduce greater errors than

those due to the use of simpler, less precise, resonance fre-
quency estimates.

Many measurements of the random responses of panels (e.g.,
Refs. 6, 9-12) have shown these responses to be dominated by

the fundamental panel mode. Data on realistic aircraft struc-

tures (e.g., Refs. 13, 14) and related analyses (summarized in

Ref. 8) have indicated that the responses of skin-stringer con-
figurations generally* are dominated by modes in which each pan-

el vibrates in a fundamental mode corresDondin_ to a boundary
condition (at each edge) that lies between the fully clamped

and the simmly supported. It is therefore reasonable to focus

on the fundamental panel mode, and to omit the more complex
higher modes from consideration.

Reference 9 presents (on p. 224) a curve that summarizes

the experimentally observed variation with aspect ratio of the

fundamental resonance frequencies of rectangular panels of skin-

stringer configurations. Although one may use this curve for
estimation purposes, an analytic approximation to it will prove

useful for determining how the fatigue life of the panel depends

on the various parameters. Inspection of this curve, together

with the corresponding curves for panels that are simply sup-

ported and for panels that are clamped on all four edges, re-

veals that the experimentally observed frequencies are very

nearly equal to the geometric average of the resonance frequen-

cies for the two ideal boundary condition cases.

The fundamental resonance of a simply supported panel of

thickness h and edge lengths a and b is given by

*However, some data are available (Refs. 15, 16) which

show that the fundamental panel mode response does not always

predominate.
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